1. Protein-DNA-membrane interactions in bacterial division:

  • MatP protein from the chromosomal Ter-linkage (2019) and the nucleoid-associated SlmA protein bind to lipid membranes (2020) as evidenced by biochemical reconstitution


2. FtsZ and macromolecular phase separation

  • FtsZ forms phase-separated condensates with its nucleotide-associated inhibitor SlmA in crowded cell-like media (2019, 2020)
  • Dissipative self-assembly of FtsZ in coacervate cells (2018)
  • Crowding-driven phase transitions control FtsZ spatial organization in artificial containers (2016,2017)




3. Reconstruction of minimal divisomes in membrane systems and cell-like compartments

  • Chiral vortex dynamics in membranes is an intrinsic property of FtsZ (2018)
  • FtsZ waves driven by the division site selection MinCDE complex in ZipA-containing bilayers (2015)
  • Dynamic interactions between proto-ring elements evidenced in nanodiscs (2013), lipid-coated beads (2017), and supported lipid bilayers (2019)
  • Constriction forces partially reproduced by proto-ring elements when assembled in permeable giant vesicles (2013)


Z-Min waves




4. Biochemical reactions in cytomimetic media: macromolecular crowding

  • Cytomimetic approaches to narrow the gap between in vitro and in vivo studies of macromolecular organization and cell function (2016, 2018)
  • Macromolecular crowding and confinement: physicochemical and biochemical consequences (2008)




5. Biochemical and biophysical analysis of FtsZ associations and assembly

  • Description of the mechanism of interaction between FtsZ and negative regulators of Z-ring stability (MinC, SlmA, and bacteriophage l Kill) in solution (2013, 2015)  
  • Control by nucleotides, Mg, and crowding of FtsZ oligomerization and assembly (2001, 2003, 2005, 2012, 2013)








  • Monterroso B, Robles-Ramos MA, Zorrilla S, Rivas G*. 2020. Reconstituting bacterial cell division assemblies in crowded, phase-separated media. Methods Enzymol. (in press)
  • Robles-Ramos MÁ, Margolin W, Sobrinos-Sanguino M, Alfonso C, Rivas G*, Monterroso B*, Zorrilla S*. 2020. The nucleoid occlusion protein SlmA binds to lipid membranes. mBio. 11:e02094-20.
  • Monterroso B, Zorrilla S, Sobrinos-Sanguino M, Robles-Ramos MA, Alfonso C, Söderström B, Meiresonne NY, Verheul J, den Blaauwen T, Rivas G. 2019. The bacterial DNA binding protein MatP involved in linking the nucleoid terminal domain to the divisome at midcell interacts with lipid membranes. mBio. 10:e00376-19.
  • Monterroso B*, Zorrilla S*, Sobrinos-Sanguino M, Robles-Ramos MA, López-Álvarez M, Margolin W, Keating KD, Rivas G*. 2019. Bacterial division FtsZ protein forms phase-separated condensates with its nucleoid-associated inhibitor SlmA. EMBO reports. 20:e45946
  • Sobrinos-Sanguino M, Vélez M, Richter RP, Rivas G. 2019. Reversible membrane tethering by ZipA determines FtsZ polymerization in two and three dimensions. Biochemistry. 58:4003-4015.
  • Ramirez-Diaz DA, García-Soriano DA, Raso A, Mücksch J, Feingold M, Rivas G*, Schwille P*. 2018. Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture. PLoS Biol. 16:e2004845
  • Rivas G*, Minton AP*. 2018. Toward an understanding of biochemical equilibria within living cells. Biophys Rev. 10:241-253
  • Te Brinke E, Groen J, Herrmann A, Heus HA, Rivas G, Spruijt E, Huck WTS. 2018. Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nat Nanotechnol. 13:849-855.
  •  Ahijado-Guzmán R*, Menten J, Prasad J, Lambertz C, Rivas G*, Sönnichsen C*. 2017. Plasmonic nanosensors for the determination of drug effectiveness on membrane receptors. ACS Appl Mater Interfaces. 9:218-223
  • Sobrinos-Sanguino M, Zorrilla S, Keating CD, Monterroso B, Rivas G. 2017. Encapsulation of a compartmentalized cytoplasm mimic within a lipid membrane by microfluidics. Chem Commun (Camb). 53:4775-4778
  • Sobrinos-Sanguino M, Zorrilla S, Monterroso B, Minton AP, Rivas G. 2017. Nucleotide and receptor density modulate binding of bacterial division FtsZ protein to ZipA containing lipid-coated microbeads. Sci Rep. 7:13707
  • Monterroso B*, Reija B, Jiménez M, Zorrilla S*, Rivas G*. 2016. Charged molecules modulate the volume exclusion effects exerted by crowders on FtsZ polymerization. PLoS One 11:e0149060
  • Monterroso B*, Zorrilla S*, Sobrinos-Sanguino M, Keating CD, Rivas G*. 2016. Microenvironments created by liquid-liquid phase transition control the dynamic distribution of bacterial division FtsZ protein. Sci Rep. 6:35140
  • Rivas G*, Minton AP*. 2016. Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem Sci. 41:970-981
  • Alfonso C, del Castillo U, Martin I, Muga A*, Rivas G*. 2015. Sedimentation equilibrium analysis of ClpB self-association in diluted and crowded solutions. Methods Enzymol 562:135-160
  • Cabré EJ, Monterroso B, Alfonso C, Sánchez-Gorostiaga A, Reija B, Jiménez M, Vicente M, Zorrilla S*, Rivas G*. 2015. The nucleoid occlusion SlmA protein accelerates the disassembly of the FtsZ protein polymers without affecting their GTPase activity. PLoS One 10:e0126434
  • Groen J, Foschepoth D, Te Brinke E, Boersma AJ, Imamura H, Rivas G, Heus HA, Huck WT. 2015. Associative interactions in crowded solutions of biopolymers counteract depletion effects. J Am Chem Soc 137:13041-13048
  • Hernandez-Rocamora VM, Alfonso C, Margolin W, Zorrilla S*, Rivas G*. 2015. Evidence that bacteriophage λ Kil peptide inhibits bacterial cell division by disrupting FtsZ protofilaments and sequestering protein subunits. J Biol Chem. 290:20325-20335
  • Martos A, Raso A, Jiménez M, Petrášek Z, Rivas G*, Schwille P*. FtsZ polymers tethered to the membrane by ZipA are susceptible to spatial regulation by Min waves. Biophys J 108:2371-83
  • Ahijado-Guzmán R, Prasad J, Rosman C, Henkel A, Tome L, Schneider D, Rivas G*, Sönnichsen C*. 2014. Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities. Nano Lett. 14:5528-5532
  • Hernández-Rocamora VM*, García-Montañés C, Rivas G*. 2014. Phospholipid bilayer nanodiscs: A powerful tool to study the structural organization and biochemical activity of proteins in membrane-like environments. Curr. Top. Med. Chem. 14:2637-2646
  • Rivas G*, Vogel SK, Schwille P*. 2014. Reconstitution of cytoskeletal protein assemblies for large-scale membrane transformation. Curr. Opin. Chem. Biol. 22C:18-26
  • Ahijado-Guzmán R, Alfonso C, Reija B, Salvarelli E, Mingorance J, Zorrilla S, Monterroso B*, Rivas G*. 2013. Control by potassium of the size-distribution of Escherichia coli FtsZ polymers is independent of GTPase activity. J. Biol. Chem. 288:27358-27365
  • Cabré EJ, Sánchez-Gorostiaga A, Carrara P, Ropero N, Casanova M, Palacios P, Stano P, Jiménez M*, Rivas G*, Vicente M*. 2013. Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination. J. Biol. Chem. 288:26625-26634
  • Hernández-Rocamora VM, García-Montañés C, Reija B, Monterroso B, Margolin W, Alfonso C, Zorrilla S*, Rivas G*. 2013. MinC shortens FtsZ protofilaments by preferentially interacting with GDP-bound subunits. J. Biol. Chem. 288:24625-24635
  • Jiménez M*, Cabré EJ, Raso A, Martos A, Rivas G*. 2013. Giant vesicles: a powerful tool to reconstruct bacterial division assemblies in cell-like compartments. Environ. Microbiol. 15:3158-3168 
  • Mellouli S, Monterroso B, Vutukuri HR, te Brinke E, Chokkalingam V, Rivas G*, Huck WTS*. 2013. Self-organization of the bacterial cell-division protein FtsZ in confined environments. Soft Matter 9:10493-10500
  • Monterroso B, Alfonso C, Zorrilla S, Rivas G*. 2013. Combined light scattering, ultracentrifugation and fluorescence correlation spectroscopy studies on the associations and assembly of the Escherichia coli cell division FtsZ protein. Methods 59:349-362
  • Rivas G*, Alfonso C, Jiménez M, Monterroso B, Zorrilla S. 2013. Macromolecular interactions of bacterial cell division FtsZ protein: From quantitative biochemistry and crowding to reconstructing minimal divisomes in the test tube. Biophys. Rev. 5:63-77
  • Ahijado-Guzmán R, Gómez-Puertas P, Álvarez-Puebla R, Rivas G*, Liz-Marzán L*. 2012. SERS-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements. ACS Nano 6:7514-7520
  • Hernández-Rocamora VM, García-Montañés C, Rivas G*, Llorca O*. 2012. Structural organization of the Escherichia coli cell division ZipA in nanodiscs complexed to FtsZ polymers as revealed by electron microscopy. J. Struct. Biol. 180:531-538
  • Hernández-Rocamora VM, Reija B, García-Montañés C, Natale P, Alfonso C, Minton AP, Zorrilla S, Rivas G*, Vicente M*. 2012. Dynamic interaction of the Escherichia coli cell division ZipA and FtsZ proteins evidenced in nanodiscs. J. Biol. Chem. 287:30097-30104
  • Martos A, Jiménez M, Rivas G*, Schwille P*. 2012. Towards a bottom-up reconstitution of bacterial cell division. Trends Cell Biol. 22:634-643
  • Monterroso B, Ahijado-Guzmán R, Alfonso C, Reija B, Zorrilla S, Minton AP, Rivas G*. 2012. Mg2+-linked self-assembly of FtsZ in the presence of GTP and a GTP analog involves the concerted formation of a narrow distribution of oligomeric species. Biochemistry 51:4541-4550
  • Monterroso B, Rivas G*, Minton AP*. 2012. An equilibrium model for the Mg++ - linked self-assembly of FtsZ in the presence of GTP or a GTP analogue. Biochemistry 51:6108-6113
  • Jiménez M, Martos A, Vicente M, Rivas G*. 2011. Reconstitution and organization of E. coli proto-ring elements (FtsZ and FtsA) inside giant unilamellar vesicles obtained from bacterial inner membranes. J. Biol. Chem. 286:11236-11241
  • Reija B, Monterroso B, Jiménez M, Vicente M, Rivas G*, Zorrilla S*. 2011. Development of a homogeneous fluorescence anisotropy assay to monitor and measure FtsZ assembly in solution. Anal. Biochem. 418:89-96
  • Rincón V, Bocanegra R, Rodríguez-Huete A, Rivas G*, Mateu MG*. 2011. Effects of macromolecular crowding on the inhibition of virus assembly and virus-cell receptor recognition. Biophys. J. 100:738-746
  • Martos A, Alfonso C, López-Navajas P, Ahijado-Guzmán R, Mingorance J, Minton AP, Rivas G*. 2010. Characterization of self- and hetero-interactions of bacterial cell division proteins FtsZ and sZipA by composition gradient – static light scattering (CG-SLS). Biochemistry 49:10780-1078



  • Zhou HX*, Rivas G*, Minton AP*. 2008. Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences.  Annu. Rev. Biophys.  37:375-397
  • Howlett GJ, Minton AP, Rivas G*. 2006. Analytical ultracentrifugation studies of protein associations and assembly.  Curr. Opin. Chem. Biol. 10:430-436
  • Del Álamo M, Rivas G*, Mateu MG*. 2005. Effect of macromolecular crowding agents on human immunodeficiency virus type 1 capsid protein assembly in vitroJ. Virol. 79:14271-14281
  • González JM, Vélez M, Jiménez M, Alfonso C, Schuck P, Mingorance J, Vicente M, Minton AP, Rivas G*. 2005. The cooperative behaviour of E. coli cell division protein FtsZ assembly involves the preferential cyclization of long single-stranded fibrils.  Proc. Natl. Acad. Sci. USA 102:1895-1900


  •  Ellis JR, Minton AP, Rivas G*. 2004. Special issue: EMBO workshop on Biological Implications of Macromolecular Crowding.  J. Mol. Recog. 17:349-511
  • Rivas G*, Ferrone F, Herzfeld J. 2004. Life in a crowded world.  EMBO reports 5:23-27
  • Rivas G*, Minton AP*. 2004. Non-ideal tracer sedimentation equilibrium: A powerful tool for the characterization of macromolecular interactions in crowded solutions.  J. Mol. Recog. 17:362-367
  • Zorrilla S, Jiménez M, Lillo P, Rivas G, Minton AP*. 2004. Sedimentation equilibrium in a solution containing an arbitrary number of solute species at arbitrary concentrations: theory and application to concentrated solutions of ribonuclease.  Biophys. Chem. 108:89-100
  • Zorrilla S, Rivas G, Acuña AU, Lillo MP. 2004. Protein self-association in crowded protein solutions: a time-resolved fluorescence polarization study.  Protein Sci. 13:2960-2969
  • González JM, Jiménez M, Vélez M, Mingorance J, Andreu JM, Vicente M, Rivas G*. 2003. Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment.  J. Biol. Chem. 278:37664-37671
  • Rivas G*, Minton AP*. 2003. Tracer sedimentation equilibrium: A powerful tool for the quantitative characterization of macromolecular self- and hetero-associations in solution.  Biochem. Soc. Trans. 31:1015-1019
  • Rivas G*, Fernández JA, Minton AP*. 2001. Direct observation of the enhancement of non-cooperative protein self-assembly by macromolecular crowding: Indefinite self-association of bacterial cell division protein FtsZ.  Proc. Natl. Acad. Sci. USA 98:3150-3155
  • Rivas G*, López A, Mingorance J, Minton AP, Ferrándiz MJ, Vicente M, Zorrilla S, Andreu JM. 2000. Magnesium-induced linear self-association of the FtsZ bacterial cell division protein monomer: The primary steps of FtsZ assembly.  J. Biol. Chem. 275:11740-11749