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Abstract: The genomes of three representative Poly-
porales (Bjerkandera adusta, Phlebia brevispora and a
member of the Ganoderma lucidum complex) recently
were sequenced to expand our knowledge on the diver-
sity and distribution of genes involved in degradation of
plant polymers in this Basidiomycota order, which
includes most wood-rotting fungi. Oxidases, including
members of the glucose-methanol-choline (GMC) oxi-
doreductase superfamily, play a central role in the
above degradative process because they generate extra-
cellular H2O2 acting as the ultimate oxidizer in both
white-rot and brown-rot decay. The survey was com-
pleted by analyzing the GMC genes in the available
genomes of seven more species to cover the four Poly-
porales clades. First, an in silico search for sequences
encoding members of the aryl-alcohol oxidase, glucose
oxidase, methanol oxidase, pyranose oxidase, cello-
biose dehydrogenase and pyranose dehydrogenase
families was performed. The curated sequences were
subjected to an analysis of their evolutionary relation-
ships, followed by estimation of gene duplication/
reduction history during fungal evolution. Second,
the molecular structures of the near one hundred
GMC oxidoreductases identified were modeled to
gain insight into their structural variation and expected
catalytic properties. In contrast to ligninolytic peroxi-
dases, whose genes are present in all white-rot Polypor-
ales genomes and absent from those of brown-rot
species, the H2O2-generating oxidases are widely dis-
tributed in both fungal types. This indicates that the
GMC oxidases provide H2O2 for both ligninolytic per-
oxidase activity (in white-rot decay) and Fenton attack
on cellulose (in brown-rot decay), after the transition
between both decay patterns in Polyporales occurred.

Key words: brown-rot fungi, evolutionary relation-
ships, GMC oxidoreductases, sequenced genome analysis,
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INTRODUCTION

Although species from several Basidiomycota (and
some Ascomycota) orders contribute to lignocellulose
decay, the ability to degrade wood is a typical feature
of the order Polyporales. This capability was an essen-
tial evolutionary trait acquired by ancestral basidiomy-
cetes in the later Carboniferous period (Floudas et al.
2012), when the amount of carbon fixed by photo-
synthesis strongly increased due to colonization of
land ecosystems by vascular plants. Nowadays fungal
decay of wood represents a natural model for the sus-
tainable use of plant resources in lignocellulose biore-
fineries (Martínez et al. 2009, Ragauskas et al. 2014).

The first basidiomycete genome to be sequenced
was that of Phanerochaete chrysosporium (5 Phanerodontia
chrysosporium) (Martinez et al. 2004) due to the interest
in this white-rot fungus of the order Polyporales as a
model lignin-degrading organism (Kersten and Cullen
2007). Wood attack by white-rot fungi is based on their
ability to degrade the recalcitrant polymer of lignin in
a process that was defined as an enzymatic “combus-
tion” (Kirk and Farrell 1987) and combines extracellu-
lar oxidases and peroxidases (Kersten and Cullen
2007, Ruiz-Dueñas and Martínez 2009). With a few
exceptions corresponding to poor wood rotters (e.g.
species of Jaapiales and Cantharellales), the presence
of lignin peroxidase (LiP3, EC 1.11.1.14), manganese
peroxidase (MnP, EC 1.11.1.13) or versatile peroxidase
(VP, EC 1.11.1.16) genes is a constant characteristic of
all typical white-rot fungi based on comparative gen-
ome analysis (Floudas et al. 2012, 2015; Ruiz-Dueñas
et al. 2013). The diversity, distribution and evolution-
ary relationships of ligninolytic peroxidases in the
order Polyporales has been studied (Ruiz-Dueñas et al.
2013).

Brown-rot fungi have developed an alternative strat-
egy, based on Fenton chemistry, to overcome the lig-
nin barrier (Baldrian and Valaskova 2008). H2O2

reduction by ferrous iron yields hydroxyl free radical,
which is able to access, oxidize and depolymerize
wood cellulose with a more or less limited modification
of lignin (Kirk 1975, Martínez et al. 2011, Yelle et al.
2011). In 2009 the genome of Rhodonia placenta (syn.:
Postia placenta) was sequenced as the model brown-rot
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fungus to increase our understanding of this type of
wood decay (Martinez et al. 2009).

Several oxidases have been related to wood biode-
gradation as a source of extracellular H2O2 (from O2

reduction), including glucose oxidase (GOX, EC
1.1.3.4) (Kelley and Reddy 1986), methanol oxidase
(MOX, EC 1.1.3.13, also known as ethanol/alcohol
oxidase) (Nishida and Eriksson 1987, Daniel et al.
2007), aryl-alcohol oxidase (AAO, EC 1.1.3.7) (Guillén
et al. 1990), pyranose 2-oxidase (P2O, EC 1.1.3.10)
(Daniel et al. 1992) and glyoxal oxidase (GLX, EC
1.1.3.−) (Kersten and Kirk 1987). Although the invol-
vement of some other intracellular oxidases has been
suggested (Greene and Gould 1984, Kelley and Reddy
1986), wood decay is an extracellular process and
secreted oxidases are more likely involved. Alternative
mechanisms for H2O2 generation have been sug-
gested, including Mn(III)-mediated oxidation of
glyoxylic/oxalic acids (Urzúa et al. 1998).

GLX belongs to the superfamily of copper-radical oxi-
dases (Whittaker et al. 1996) whose distribution in Poly-
porales genomes has been reported (Kersten and
Cullen 2014). In contrast all other oxidases mentioned
above are flavooxidases from the GMC oxidoreductase
superfamily whose first three members were GOX,
MOX and choline dehydrogenase (Cavener 1992).
Two additional GMC enzymes, which are inefficient
reducing O2 to H2O2, are cellobiose dehydrogenase
(CDH, EC 1.1.99.18) and pyranose dehydrogenase
(PDH, EC 1.1.99.29) (Zámocký et al. 2006, Kruså et al.
2008, Peterbauer and Volc 2010). All members of the
GMC superfamily share similar structural features
(Wierenga et al. 1986, Kiess et al. 1998). Recently several
GMCs have been classified in the so-called subfamilies
AA3_1 (CDH), AA3_2 (AAO/GOX), AA3_3 (MOX)
and AA3_4 (P2O) of the CAZy database (Levasseur et al.
2013), but this nomenclature is not used here.

Three representative Polyporales—Bjerkandera adu-
sta, Ganoderma sp. (G. lucidum complex) and Phlebia bre-
vispora—were sequenced (Hibbett et al. 2013) and
their different GMC gene families are analyzed here.
Bjerkandera adusta is a strong lignin degrader, which
produces AAO (Muheim et al. 1990) together with lig-
ninolytic peroxidases (Kimura et al. 1991, Heinfling
et al. 1998). Some species of Ganoderma cause extensive
wood delignification (González et al. 1986; Martínez
et al. 1995, 2011) and little is known about GMC pro-
duction by these fungi (Peláez et al. 1995, Ralph et al.
1996). Finally, P. brevispora was investigated for wood
biopulping due to selective lignin removal (Akhtar
et al. 1993, Fonseca et al. 2014). Moreover, seven addi-
tional sequenced Polyporales genomes were screened
and included in the present comparative analysis of
GMC-encoding genes. The present study is part of a
wider genomic project covering other gene families

(Ruiz-Dueñas et al. 2013, Hori et al. 2013, Mgbeahur-
uike et al. 2013, Syed et al. 2013, Kovalchuk et al.
2013) as an example of genome-enabled mycology to
gain insight into the biology and evolution of fungi
(Hibbett et al. 2013).

MATERIALS AND METHODS

Genome sequencing.—The genomic sequences of B. adusta
(HHB-12826-SP), P. brevispora (HHB-7030-SS6) and Ganoderma
sp. (10597-SS1) were obtained at the Joint Genome Institute
(JGI), as part of the Saprotrophic Agaricomycotina Project
coordinated by D.S. Hibbett (Clark University, USA). The gen-
omes were produced as described by Binder et al. (2013), and
the gene prediction is available at http://genome.jgi.doe.gov/
Bjead1_1; http://genome.jgi.doe.gov/Gansp1 and http://
genome.jgi.doe.gov/Phlbr1, respectively.

Genome screening for GMC gene families in Polyporales.—The
above genomes, plus those of Dichomitus squalens, Fomitopsis
pinicola, Gelatoporia subvermispora (syn.: Ceriporiopsis subvermis-
pora), P. chrysosporium, R. placenta, Trametes versicolor and Wol-
fiporia cocos (5 Wolfiporia extensa) available at the JGI
MycoCosm portal (http://genome.jgi.doe.gov/programs/
fungi) (Grigoriev et al. 2012) were screened for genes of
the AAO, MOX, GOX, CDH, P2O and PDH families in the
GMC superfamily. Among the above genomes, those from
the Antrodia clade (F. pinicola, R. placenta, W. cocos) corre-
spond to wood decay by brown-rot species while the other
species (B. adusta, D. squalens, Ganoderma sp., G. subvermispora,
P. chrysosporium, P. brevispora and T. versicolor) cause white-rot
decay of wood.

The screening for each of the GMC families was performed
by querying an entire set of filtered model proteins for each
of the genomes with the following (GenBank) reference
sequences: (i) AAO from Pleurotus eryngii (AAC72747); (ii)
MOX from Gloeophyllum trabeum, Pichia methanolica and Candida
boidinii (ABI14440, AF141329 and Q00922); (iii) GOXs from
Talaromyces flavus, Penicillium expasum, Penicillium amagasa‐
kiense, Aspergillus niger and Botryotinia fuckeliana (AAB09442,
ABN79922, AAD01493, AAF59929 and CAD88590); (iv) CDHs
from P. chrysosporium, G. subvermispora, Coniophora puteana, Pycno-
porus cinnabarinus (syn.: Trametes cinnabarina) and T. versicolor
(CAA61359, ACF60617.1, BAD32781 AAC32197, AAC50004);
(v) P2Os from T. versicolor, Peniophora sp., P. chrysosporium, Lyo-
phyllum shimeji and G. trabeum (BAA11119, AAO13382,
AAS93628, BAD12079 and ACJ54278); (vi) PDHs from Leucoa-
garicus meleagris (syn.: Agaricus meleagris), Agaricus xanthodermus
and Agaricus bisporus (AAW82997, AAW92123 and AAW92124).

Sequence analysis.—The genomic sequences with the highest
similarities with the reference sequences for the different
GMC families first were examined for the automatically
annotated introns, searching for consensus 59–39 and lariat
sequences (Ballance 1986), as well as for the annotation
of N- and C-termini. The presence/absence of secretion sig-
nal peptides predicted by the JGI automatic annotation pipe-
line was manually revised to detect possible mistakes (e.g.
in neighbor introns) that could result in inaccurate
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predictions, followed by inspection of the eventually revised
sequences with the Signal P 4.0 server (www.cbs.dtu.dk/
services/SignalP-4.0) (Petersen et al. 2011). Moreover, other
servers as TargetP 1.1 (Emanuelsson et al. 2000), WoLF
PSORT (Horton et al. 2007) and TMHMM 2.0 were used to
confirm the secreted nature of proteins as well as to predict
their putative subcellular locations. Predictions were con-
firmed by multiple alignment with MUSCLE (Edgar 2004)
and by the comparison with reference sequences. Multiple
alignments also were used for analysis of motifs conserved
in GMC proteins (the ADP-binding domain and, at least,
one of the two characteristic Prosite PS00623 and PS00624
sequences) (Cavener 1992). The sequences that lacked these
GMC conserved motifs were discarded.

Finally, molecular models of 94 out of the 95 GMC
sequences (references in SUPPLEMENTARY TABLE I) could be
generated at the Swiss-Model server (www.swissmodel.
expasy.org), which selected the most adequate templates
(Bordoli et al. 2009). For AAO, MOX, GOX, CDH and P2O
sequences, the crystallographic structures of P. eryngii AAO
(PDB 3FIM), Arthrobacter globiformis choline oxidase (PDB
3LJP, note that no MOX crystal structure is available),
A. niger GOX (PDB 1CF3), P. chrysosporium CDH (PDB
1KDG) and Aspergillus oryzae P2O (PDB 1TTO), respectively,
were used as templates. Strictly conserved histidine and histi-
dine/asparagine residues at the active site (Hernández-
Ortega et al. 2012c, Wongnate et al. 2014) were searched
for in all the models, and sequences lacking these residues
were discarded.

GMC evolutionary history.—The evolutionary history of the
(95) GMC sequences obtained was estimated with RaxML
7.7.1 (Stamatakis et al. 2008) from the multiple alignment
obtained with MEGA 5 (Tamura et al. 2011) (alignment in
SUPPLEMENTARY FIG. 1). For evolutionary tree construction,
a maximal likelihood with clustering method was used,
with the WAG model of amino acid substitutions, and the
gaps treated as deletions (a 100-iteration bootstrap was per-
formed). Identity degrees among all the above sequences
were obtained after pairwise alignment with Clustal W2.

Reconciliation analyses.—The histories of gene duplication and
losses for total GMCs (and the individual families) were
inferred with Notung 2.6 (Durand et al. 2006). The gene
tree was used as input and combined with a Polyporales phy-
logenetic tree (Binder et al. 2013) from TreeBASE (www.
treebase.org, tree ID Tr67497). The estimated numbers of
gene duplications and deletions on each branch were used
to hypothesize the number of sequences at the ancestral
nodes. Two different threshold levels (30% and 90%) were
used to assess the significance of the predictions obtained.

RESULTS

GMC gene families in three recently sequenced and other Poly-
porales genomes.—A total of 41 GMC genes—21 AAO, 15
MOX, 3 CDH and 2 P2O genes (TABLE I)—were iden-
tified in the recently sequenced genomes of B. adusta,
Ganoderma sp. and P. brevispora. Family classification
was completed by inspection of the enzyme molecular
models described below for characteristic flavin envir-
onment and catalytic residues (Gadda 2008, Hernán-
dez-Ortega et al. 2012a, Wongnate and Chaiyen 2013,
Romero and Gadda 2014). The genome of B. adusta
has the highest number of GMC genes (a total of
18), while similar numbers (11–12 genes) were found
in the two other genomes (TABLE I). No GOX or
PDH genes were found in any case and P2O genes
also were absent from the Ganoderma sp. genome.
AAO genes are the most abundant GMC genes in
B. adusta and Ganoderma sp. (11 and 7, respectively)
while MOX genes are the most abundant in P. brevis-
pora (six genes). None of the 41 GMC genes identified
in the three genomes had been cloned and deposited
in databases (TABLE I).

Annotated genomes from seven more species of
Polyporales were included for a wider comparison.
The resulting 10 genomes include representatives of
the Phlebioid (B. adusta, P. brevispora, P. chrysosporium),

TABLE I. Inventory of 95 genes from six GMC families in the genomes of 10 Polyporales species (BJEAD, B. adusta; PHLBR, P.
brevispora; PHACH, P. chrysosporium; DICSQ, D. squalens; GANSP, Ganoderma sp., TRAVE, T. versicolor; GELSU, G. subvermispora;
FOMPI, F. pinicola; RHOPL, R. placenta; and WOLCO, W. cocos) from four clades, producing white-rot and brown-rot decay
of wood

Phlebioid Core polyporoid Gelato-poria Antrodia

Clade BJEAD PHLBR PHACH DICSQ GANSP TRAVE GELSU FOMPI RHOPL WOLCO

AAO 11 3 3 8 7 3 4 1 2 0
MOX 5 6 3 4 4 4 1 4 4 4
GOX 0 0 1 0 0 0 0 0 2 0
CDH 1 1 1 1 1 1 1 0 0 0
P2O 1 1 1 0 0 1 0 0 0 0
PDH 0 0 0 0 0 0 0 0 0 0

All GMCs 18 11 9 13 12 9 6 5 8 4
Ecology White rot Brown rot

Four allelic variants (SUPPLEMENTARY TABLE I) are excluded from the inventory.
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core Polyporoid (D. squalens, Ganoderma sp., T. versico-
lor) Gelatoporia (G. subvermispora) and Antrodia (F. pini-
cola, R. placenta, W. cocos) clades (Binder et al. 2005).
The number of genes of the different GMC families in
each of the genomes is included herein (TABLE I), up
to a total of 95 (JGI protein ID references are included
[SUPPLEMENTARY TABLE I], as well as the existence of
alleles and recognized signal peptides; and the com-
plete sequences are provided in the alignment [SUPPLE-

MENTARY FIG. 1]). MOX genes are equally present in the
white-rot and brown-rot genomes (average 4.0–4.4
genes/genome) while those of AAOs are nearly sixfold

more abundant in the genomes of white-rot (av. 5.7
genes/genome) than brown-rot (av. 1.0 gene/genome)
species. Moreover, CDH genes were present in all the
white-rot genomes (one copy per genome) but absent
from the brown-rot genomes. Finally, P2O genes also
were absent from the brown-rot genomes and no PDH
genes were found in any of the genomes.

Structural modeling of GMC oxidoreductases from Polyporales
genomes.—Most of the predicted GMC sequences (94
of 95) were modeled with related crystal structures
as templates. Five representative structures (FIG. 1)

FIG. 1. Ribbon models for the molecular structures of representative members of the five GMC oxidoreductase families
found in 10 Polyporales genomes (flavin and heme cofactors are shown as sticks). A. AAO of B. adusta (JGI protein ID 245059)
indicating the position of four b-sheets, individual b-strands and 19 a-helices. B. MOX (monomer) of F. pinicola (JGI protein ID
156775). C. GOX (monomer) of P. chrysosporium (JGI protein ID 131961). D. CDH of G. subvermispora (JGI protein ID 84792)
(flavin domain in the left and heme domain in the right. E. P2O (monomer) of B. adusta (JGI protein ID 34622). The molecular
models were built with crystal structures of related proteins as templates.
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correspond to B. adusta AAO (A), F. pinicola MOX
(B), R. placenta GOX (C), G. subvermispora CDH (D)
and B. adusta P2O (E) mature proteins. All these
GMCs show a common folding with the lower
domain harboring the FAD cofactor. Specific fea-
tures are present in AAO, which possesses a loop par-
tially covering the entrance to the active site (FIG. 2A,
left); and CDH, which has a heme domain connected
by an unstructured linker (FIG. 1D). Of interest,
AAOs and CDHs are known as monomeric proteins
while GOXs, P2Os and MOXs form oligomers
(Romero and Gadda 2014). One large b-sheet is pre-
sent in both the FAD-binding (sheet A) and the sub-
strate-binding (sheet C) domains, the former being
accompanied by two small sheets (B, D) and the lat-
ter by only one (sheet E) (FIG. 1A). Similar numbers
of a-helices exist in the FAD-binding and the sub-
strate-binding domains (9–10 in AAO), some
of them (e.g. AAO helices 1, 4, 10) conserved in
most GMCs. All the predicted models present the
ADP-binding bab motif near their N-termini (SUP-

PLEMENTARY FIG. 2A) and the GMC signatures 1
and 2 (Prosite PS00623 and PS00624, respectively;
SUPPLEMENTARY FIG. 2B, C), with the only exception
of P2O that lacks signature 1.

The FAD flavin ring enters the GMC upper
domain, where several residues form a substrate-
binding site at the re-side of the isoalloxazine ring
(FIG. 2). They include a histidine strictly conserved
in the superfamily (SUPPLEMENTARY FIG. 1 multiple
alignment), corresponding to B. adusta AAO His497

(FIG 2A), F. pinicola MOX His535 (FIG. 2B), P. chrysos-
porium GOX His538 (FIG. 2C), G. subvermispora CDH
His688 (FIG. 2D) and B. adusta P2O His540 (FIG.
2E). A second conserved histidine in AAO and
GOX (His541 and His581 in FIG. 2A, C, respectively)
is replaced by an asparagine in MOX, CDH and P2O
proteins (Asn 578, Asn731, Asn583; FIG. 2B, D, E,
respectively). An aromatic residue often precedes
the fully conserved histidine, being a tryptophan in
AAO (Trp496) and MOX (Trp534) and a phenylala-
nine in GOX (Phe537), while a leucine (Leu539)
and an asparagine (Asn687) occupy this position in
the P2Os and CDHs, respectively (FIG. 2). At the
opposite (si) side of the isoalloxazine ring another
aromatic residue, which points toward the active
site, is conserved, being a phenylalanine in AAO
(Phe90) and a tyrosine in MOX (Tyr99) and GOX
(Tyr90) (FIG. 2A–C). An asparagine preceding the
latter position is conserved in all the Polyporales
GMCs (Asn89, Asn98, Asn89, Asn322 in FIG. 2 AAO,
GOX, MOX, CDH, respectively) with the exception
of P2Os. This asparagine residue, also conserved in
other GMCs, is involved in flavin bent conformation
(Kiess et al. 1998).

Evolutionary history of GMC oxidoreductases in the Polypor-
ales genomes.—The evolutionary history of the 95
GMCs identified in the 10 Polyporales genomes
(five allelic variants, SUPPLEMENTARY TABLE I,
excluded) was inferred by comparing their predicted
amino-acid sequences (mature proteins). It is worth

FIG. 2. Detail of active-site residues in the molecular models for the five Polyporales GMCs (FIG. 1). A. B. adusta AAO. B. F.
pinicola MOX. C) P. chrysosporium GOX. D. G. subvermispora CDH. E. B. adusta P2O. Residue numbering corresponds to the
putative mature proteins. FAD and the selected residues are shown as sticks. The N390-T402 loop of AAO is shown in A.
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noting that all the sequences from each of the GMC
families cluster together in the maximal likelihood
tree (FIG. 3). The two main groups correspond to
the 39 MOXs and the 42 AAOs (100% and 79% boot-
strap, respectively), with the only 3 GOXs distantly
associated to the AAOs. Of interest, 10 of the 11

B. adusta AAOs are included in a 13-member sub-
group (a, 100% bootstrap), suggesting recent dupli-
cation. In contrast MOXs include a subgroup (b,
100% bootstrap) of 10 sequences, each from one of
the genomes. These 10 sequences share an insertion
and a slightly longer C-terminus (SUPPLEMENTARY FIG.

1) involved in oligomerization and/or secretion of
the enzymes through a unique secretory pathway
(Danneel et al. 1994), suggesting a common origin
of these genes. At the basal nodes the well supported
(100% bootstrap) P2O (four sequences) and CDH
(seven sequences) families appear unrelated
between them and with the rest of the GMCs. The
distant position of the latter families and the related-
ness between AAOs, GOXs and MOXs agree with the
pairwise identity values across and within gene
families (SUPPLEMENTARY FIG. 3). In fact the average
pairwise (interfamily) identity between P2O and
CDH sequences is 8% and, among them and the
rest of the families, range between 11% and 14%.
These values are significantly lower than those
between AAO and MOX (25% interfamily average),
GOX and MOX (24% interfamily average) and
AAO and GOX sequences (31% interfamily average).
On the other hand the pairwise (intrafamily) identi-
ties within the CDH and P2O families are higher,
73% and 51%, respectively; whereas AAOs, GOXs
and MOXs show values of 46%, 30% and 57%,
respectively.

GMC gene duplication and loss during diversification of
Polyporales.—The expansion or reduction in the num-
ber of GMC genes upon evolution of Polyporales was
investigated by reconciliation of the evolutionary tree
of the 95 GMC genes (FIG. 3) and the phylogenetic
tree of the 10 species of Polyporales (from TreeBASE)
using Notung. The results (using two different thresh-
old levels) suggest that the ancestors of Polyporales
had a high number of GMC genes, more than found
in any of the extant species or the predicted intermedi-
ate ancestors (FIG. 4). Therefore during GMC evolu-
tion 14 contraction events and two expansions (from
nodes d to node g and from node e to node h) were
predicted. A similar tendency was observed for each
of the individual GMC families (SUPPLEMENTARY FIG.
4A–E) with a total of 39 contractions and seven expan-
sions. In this case expansions resulted in higher AAO
(in node g and in B. adusta; SUPPLEMENTARY FIG. 4A),
GOX (in R. placenta; SUPPLEMENTARY FIG. 4C) and
P2O (in node c; SUPPLEMENTARY FIG. 4E) gene num-
bers (often after previous contractions) than predicted
for the initial Polyporales ancestor. The stronger con-
traction of GMC gene numbers was evident in the
Antrodia clade, resulting in only 4–5 genes in W. cocos
and F. pinicola, and the largest expansion was observed

FIG. 3. Maximal likelihood evolutionary tree of the 95
GMC sequences (five allelic variants listed in SUPPLEMENTARY

TABLE I excluded) from 10 Polyporales genomes (different
color labels), prepared with RaxML (with gaps treated as
deletions). The AAO, MOX, P2O and CDH groups (and the
a and b subgroups mentioned in the text) are shown,
together with a few GOX sequences related to AAOs.
Numbers at nodes indicate bootstrap values. Those modeled
sequences (FIGS. 1, 2) are indicated by arrows. Abbreviations
of the fungal species are provided (TABLE I) as are complete
amino-acid sequences (SUPPLEMENTARY FIG. 1).
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in B. adusta (Phlebioid clade) with 18 GMC genes,
including 11 AAOs (FIG. 4). Of interest, most of the
remaining GMC genes in the Antrodia clade corre-
spond to the MOX family (4/5 in F. pinicola, 4/8 in
R. placenta and 4/4 in W. cocos).

DISCUSSION

The global reaction in initial wood decay by white-rot
and brown-rot basidiomycetes is iron-catalyzed oxida-
tion of lignin or polysaccharides, respectively, by
H2O2 generated by oxidases (from the GMC and/or
the copper-protein radical superfamilies). In white-
rot decay this reaction is catalyzed by Fe3+ in the
heme cofactor of ligninolytic peroxidases, while in
brown-rot decay free Fe2+ reduces H2O2 forming the
highly reactive hydroxyl radical (Martínez et al. 2005;
Kersten and Cullen 2007; Baldrian and Valaskova
2008, 2009). The information available on the pre-
sence and relevance of GMC families in Polyporales
species is discussed below.

Aryl-alcohol oxidase.—AAO first was isolated from Pleuro-
tus species (Agaricales) (Bourbonnais and Paice 1988;
Guillén et al. 1990; Sannia et al. 1991, 1992) where it

generates H2O2 by redox-cycling of anisaldehyde
(Guillén and Evans 1994), an extracellular fungal
metabolite (Gutiérrez et al. 1994). Subsequent studies
focused on the Pleurotus eryngii enzyme, which was
cloned and sequenced (Varela et al. 1999), heterolo-
gously expressed (Varela et al. 2001, Ruiz-Dueñas et al.
2006), crystallized (Fernández et al. 2009) and its reac-
tion mechanisms investigated by a variety of techni-
ques (Ferreira et al. 2005, 2006, 2009, 2010, 2015;
Hernández-Ortega et al. 2011a, b, 2012b, c). Then a
Polyporales AAO was isolated from B. adusta (Muheim
et al. 1990). Although the above enzymes are known as
secreted proteins (Hernández-Ortega et al. 2012a),
recognized signal peptides are missing from four of
the 42 sequences from the 10 Polyporales genomes,
including one sequence from B. adusta and two from
D. squalens and P. chrysosporium. The latter is in agree-
ment with the description of an intracellular AAO in
this fungus (Asada et al. 1995).

AAO activity has been detected in cultures of a few
other Polyporales species (Peláez et al. 1995), although
a Southern blot (using a P. eryngii probe) did not detect
the corresponding gene in many of these (Varela et al.
2000), suggesting gene variability among different
fungi. AAO activity in B. adusta (Romero et al. 2010),
whose sequence corresponds to BJEAD_171002 from
the JGI genome, has been characterized largely show-
ing higher activity on p-hydroxy and chlorinated benzyl
alcohols than Pleurotus AAO (Romero et al. 2009).
p-Hydroxybenzyl alcohols are the typical substrates of
vanillyl alcohol oxidase, a flavoenzyme from a different
superfamily (Leferink et al. 2008), but they are not effi-
ciently oxidized by Pleurotus AAO, whose best sub-
strates are p-methoxylated benzyl alcohols (Guillén
et al. 1992, Ferreira et al. 2005). Therefore the best
characterized Polyporales AAO shows catalytic proper-
ties intermediate between Agaricales AAO and vanillyl-
alcohol oxidase. The higher activity of B. adusta AAO
on chlorinated benzyl alcohols, which was noticed first
by de Jong et al. (1994), is related to the ability of this
species to synthesize 3-chloro-p-methoxybenzaldehyde
(de Jong et al. 1992, de Jong and Field 1997). Redox
cycling of this and related chlorinated compounds pro-
vides a continuous source of H2O2 to B. adusta peroxi-
dases (de Jong et al. 1994), similar to the Pleurotus
anisaldehyde redox cycling. Chloroaromatics also
could help wood colonization due to their antibiotic
properties.

Glucose oxidase.—In contrast to AAO, which has been
reported rarely in ascomycetes (Goetghebeur et al.
1992), GOX has been largely studied in A. niger (Fre-
derick et al. 1990) and other ascomycetous fungi but
rarely in basidiomycetes (Danneel et al. 1993). This is
the protein with the largest sequence identity with

FIG. 4. Estimated range of GMC gene copies at the
ancestral nodes (and extant species) of the represented
phylogeny of Polyporales taken from Binder et al. (2013)
after reconciliation with the gene evolutionary history (FIG.
3) using Notung (Durand et al. 2006). Branches and
numbers after gene expansion and contraction are in black
and gray, respectively (for reconciliation of the individual
GMC families, see SUPPLEMENTARY FIG. 4).
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AAO, as shown in the gene tree, both sharing the gen-
eral folding and active-site residues (Hecht et al. 1993,
Wohlfahrt et al. 1999, Witt et al. 2000).

GOX is widely used in biosensors and other biotech-
nological applications (Bankar et al. 2009), but its
involvement in lignocellulose degradation was dis-
carded because the best known representatives are
confirmed intracellular enzymes. However, two of the
only three GOX sequences identified in the Polypor-
ales genomes include a typical signal peptide, suggest-
ing participation in the extracellular attack on
lignocellulose.

Pyranose 2-oxidase.—P2O, which differs from GOX in
glucose oxidation at the C2 (instead of the C1) posi-
tion, is known as a secreted enzyme (Daniel et al.
1994) involved in lignocellulose degradation (Nyan-
hongo et al. 2007). This oxidoreductase first was inves-
tigated in P. chrysosporium (Artolozaga et al. 1997), and
these studies suggested that P2O rather than GOX is
secreted during wood decay (Volc et al. 1996). How-
ever, none of the four genes found in the Polyporales
genomes have a recognized signal peptide, in agree-
ment with the sequence obtained by Koker et al.
(2004) for the cloned P2O gene from P. chrysosporium.
Therefore if secreted this would be by an alternative
mechanism, as suggested for MOX (see below).

P2O is produced by other Polyporales, including
Trametes multicolor (5 Trametes ochracea) (Leitner et al.
2001), and most recent P2O research focuses on this
enzyme, whose reaction mechanisms have been eluci-
dated in a variety of crystallographic, spectroscopic,
directed mutagenesis, isotope labeling and kinetic stu-
dies (Hallberg et al. 2004; Sucharitakul et al. 2008;
Prongjit et al. 2009, 2010; Pitsawong et al. 2010; Wong-
nate et al. 2011, 2014).

Methanol oxidase.—MOX is mostly known as a peroxyso-
mal enzyme in methylotrophic ascomycetous yeasts,
such as Pichia pastoris or C. boidinii (Ozimek et al.
2005). The first basidiomycete MOX was purified and
characterized from P. chrysosporium (Nishida and Eriks-
son 1987) and it is also known from Phlebiopsis gigantea
(Danneel et al. 1994). MOX was proposed as the main
oxidase in brown-rot decay based on biochemical char-
acterization and expression analyses in Gloeophyllum
trabeum (Daniel et al. 2007). The corresponding gene
is present in the genome of R. placenta (Martinez et al.
2009) and was overexpressed in wood-containing cul-
tures of this brown-rot fungus and also in those of the
white-rot P. chrysosporium (Vanden Wymelenberg et al.
2010).

The MOX gene of G. trabeum and other basidiomy-
cetes does not include a recognized signal peptide.
However, the extracellular location of MOX has

been demonstrated and operation of an alternative
secretion mechanism was proposed (Daniel et al.
2007). The rationale for MOX involvement in brown-
rot decay is that demethoxylation, resulting in metha-
nol release, was reported first by Kirk (1975) and con-
firmed by 2D-NMR analyses (Martínez et al. 2011) as
the main lignin modification in brown-rot decay.

Pyranose and cellobiose dehydrogenases.—PDH and CDH
use electron acceptors different from O2 and therefore
do not contribute to H2O2 supply. However, they oxidize
plant carbohydrates and participate in electron transfer
to other lignocellulose-degrading oxidoreductases.

PDH catalyzes the same oxidations of P2O but uses
quinones as electron acceptors, being an enzyme of
interest in biotechnology (Peterbauer and Volc
2010). The first PDH was isolated from Agaricus bis-
porus (Volc et al. 1997) and also found in related spe-
cies (Kujawa et al. 2007, Kittl et al. 2008) including
L. meleagris where it was thoroughly investigated (Tan
et al. 2013; Krondorfer et al. 2014a, b). Screening for
PDH revealed its exclusive presence in the above and
other litter-degrading Agaricales (Volc et al. 2001),
an observation that is consistent with its absence from
all the (wood-rotting) Polyporales genomes analyzed.

CDH includes both flavin and heme domains, the
former being able to oxidize cellobiose to cellobiolac-
tone by transferring the electrons to Fe3+ via the
heme domain (Henriksson et al. 2000, Zámocký et al.
2006). CDH first was described in P. chrysosporium
(whose conidial state was referred as Sporotrichum pul-
verulentum in some of these studies) (Ayers et al.
1978, Bao et al. 1993). The ancestral fusion between
the two CDH domains and the subsequent evolution
in different fungi has been discussed (Zámocký et al.
2004). One CDH gene was present in the genomes of
the seven white-rot Polyporales analyzed and absent
from the three brown-rot Polyporales genomes, in
agreement with Hori et al. (2013), in which CDH was
found only in white-rot genomes. However, this GMC
seems to be present in other brown-rot fungi, as
revealed by its early description in C. puteana (order
Boletales) (Schmidhalter and Canevascini 1993) and
its detection in the genomes of brown-rot fungi from
other Agaricomycotina orders (Floudas et al. 2012).

Its ability to generate hydroxyl radical by simulta-
neous Fe3+ and O2 reduction has been suggested (Kre-
mer and Wood 1992), but O2 reduction by CDH is
inefficient and only takes place in the absence of Fe3+.
However, recent studies showed that CDH increases
the cellulolysis yield and contributes to the action
of lytic polysaccharide monooxygenase (Langston et al.
2011).

CDH from P. chrysosporium experiences proteolytic
cleavage in cultures releasing the flavin domain (Wood
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and Wood 1992), which was described as a different
enzyme, cellobiose-quinone oxidoreductase (Wester-
mark and Eriksson 1974). However, the physiological
significance of such cleavage and the role of cellobiose-
quinone oxidoreductase under natural conditions is
unknown (Raices et al. 2002).

GMC oxidoreductases in Polyporales: final evolutionary/eco-
logical remarks.—The total number of GMC genes
cloned to date from species of the order Polyporales
is fewer than 10: from P. chrysosporium, P. cinnabarinus,
Pycnoporus sanguineus (syn.: Trametes sanguinea), T.
ochracea and T. versicolor (Leitner et al. 1998, Raices
et al. 1995, Dumonceaux et al. 1998, Moukha et al.
1999, Vecerek et al. 2004, de Koker et al. 2004, Sulej
et al. 2013). However, the present survey of GMC
genes from a broader sampling including 10 Polypor-
ales genomes (from different clades and survival strate-
gies) reveals nearly 100 GMC genes representing five
of the six best-known families (no PDH genes present).

The GMC superfamily is thought to have evolved
from an old common ancestor, which very likely exhib-
ited broad substrate specificity and poor kinetic para-
meters and gave rise to more specialized and efficient
enzymes as evolution proceeded (Cavener 1992). The
present study suggests that this diversification took
place at a more ancestral stage of fungal evolution,
with predominant gene loss among members of the
Polyporales. This resulted in two main GMC types
(groups) corresponding to AAO and MOX, with an
average of , 4 gene copies per genome, and three
small groups corresponding to P2O, CDH and GOX
(neighbor to the AAO group) with 0–1 copies per gen-
ome, in agreement with Zámocký et al. (2004) and
Kittl et al. (2008).

While ligninolytic peroxidases (from the LiP, MnP
and VP families) were absent from the brown-rot fun-
gal genomes but present in all the white-rot fungal
genomes (Ruiz-Dueñas et al. 2013), H2O2-producing
GMCs were present in genomes of both white-rot and
brown-rot species. Floudas et al. (2012) showed that
the first wood-rotting fungus appeared by incorpora-
tion of secreted high redox-potential (ligninolytic)
peroxidase genes in the genome of an ancestral basi-
diomycete. This was most likely accompanied by the
evolution of several extracellular H2O2-producing oxi-
dases, some of them with different evolutionary origin.
These included copper-radical oxidases and several
families of GMCs derived from related enzymes
involved in intracellular metabolism.

White-rot decay was likely the ancestral survival strat-
egy in wood-decay basidiomycetes (Floudas et al. 2012,
Ruiz-Dueñas et al. 2013) and brown-rot evolved several
times among Polyporales and other Agaricomyco‐
tina orders. The white-rot to brown-rot transition in

Polyporales included loss of the ligninolytic peroxi‐
dase genes, which are not required because lignin
remained polymeric in brown-rotted wood. However,
extracellular H2O2, used as peroxidase-activating sub-
strate in white-rot decay, also plays an important role
in brown-rot decay as the precursor of the hydroxyl
radical formed by Fenton reaction. Therefore it seems
that the same H2O2-generating oxidase types present
in white-rot fungi remained in the derived brown-rot
species. During evolution some differences in the fre-
quency of the individual GMC families appeared. In
this way MOX genes are the most abundant GMC
genes in the brown-rot Polyporales while AAO genes
are the most abundant in the white-rot species (up to
11 copies in B. adusta). Finally, the number of CDH
genes predicted in the ancestor of Polyporales dimin-
ished, but all the white-rot species maintain one CDH
gene, which contributes to polysaccharide degradation
by these fungi. However, CDH genes disappeared in
brown-rot fungi, where Fenton chemistry is the main
mechanism for polysaccharide attack.

ACKNOWLEDGMENTS

This work was supported by the INDOX (www.indoxproject.
eu; KBBE-2013-7-613549) European project and by the Span-
ish HIPOP (BIO2011-26694) project. The work conducted by
the U.S. Department of Energy Joint Genome Institute was
supported by the Office of Science of the U.S. Department
of Energy under Contract DE-AC02-05CH11231, in the
frame of the JGI Saprotrophic Agaricomycotina project coor-
dinated by D.S. Hibbett (Clark University, USA). J.M. Barrasa
(University of Alcalá, Spain) is acknowledged for useful com-
ments on basidiomycete systematics and ecology. JC thanks a
FPU fellowship of the Spanish Ministry of Education, Culture
and Sports.

LITERATURE CITED

Akhtar M, Attridge MC, Myers GC, Blanchette RA. 1993. Bio-
mechanical pulping of loblolly pine chips with selected
white-rot fungi. Holzforschung 47:36–40, doi:10.1515/
hfsg.1993.47.1.36

Artolozaga MJ, Kubátová E, Volc J, Kalisz HM. 1997. Pyranose
2-oxidase from Phanerochaete chrysosporium—further bio-
chemical characterization. Appl Microbiol Biotechnol
47:508–514, doi:10.1007/s002530050964

Asada Y, Watanabe A, Ohtsu Y, Kuwahara M. 1995. Purifica-
tion and characterization of an aryl-alcohol oxidase
from the lignin-degrading basidiomycete Phanerochaete
chrysosporium. Biosci Biotechnol Biochem 59:1339–
1341, doi:10.1271/bbb.59.1339

Ayers AR, Ayers SB, Eriksson KE. 1978. Cellobiose oxidase,
purification and partial characterization of a hemopro-
tein from Sporotrichum pulverulentum. Eur J Biochem
90:171–181. doi: 10.1111/j.1432-1033.1978.tb12588.x

FERREIRA ET AL.: GMC GENES IN POLYPORALES GENOMES 1113

www.indoxproject.eu
www.indoxproject.eu
http://dx.doi.org/10.1515/hfsg.1993.47.1.36
http://dx.doi.org/10.1515/hfsg.1993.47.1.36
http://dx.doi.org/10.1007/s002530050964
http://dx.doi.org/10.1271/bbb.59.1339
http://dx.doi.org/10.1111/j.1432-1033.1978.tb12588.x


Baldrian P, Valaskova V. 2008. Degradation of cellulose by
basidiomycetous fungi. FEMS Microbiol Rev 32:501–
521, doi:10.1111/j.1574-6976.2008.00106.x

Ballance DJ. 1986. Sequences important for gene expression
in filamentous fungi. Yeast 2:229–236, doi:10.1002/
yea.320020404

Bankar SB, Bule MV, Singhal RS, Ananthanarayan L. 2009.
Glucose oxidase—an overview. Biotechnol Adv 27:489–
501, doi:10.1016/j.biotechadv.2009.04.003

Bao WJ, Usha SN, Renganathan V. 1993. Purification and
characterization of cellobiose dehydrogenase, a novel
extracellular hemoflavoenzyme from the white-rot fun-
gus Phanerochaete chrysosporium. Arch Biochem Biophys
300:705–713, doi:10.1006/abbi.1993.1098

Binder M, Hibbett DS, Larsson KH, Larsson E, Langer E,
Langer G. 2005. The phylogenetic distribution of resupi-
nate forms across the major clades of mushroom-form-
ing fungi (Homobasidiomycetes). Syst Biodivers 3:113–
157, doi:10.1017/S1477200005001623

———, Justo A, Riley R, Salamov A, Lopez-Giraldez F, Sjok-
vist E, Copeland A, Foster B, Sun H, Larsson E, Larsson
KH, Townsend J, Grigoriev IV, Hibbett DS. 2013. Phylo-
genetic and phylogenomic overview of the Polyporales.
Mycologia 105:1350–1373, doi:10.3852/13-003

Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T.
2009. Protein structure homology modeling using
SWISS-MODEL workspace. Nat Protoc 4:1–13, doi:10.
1038/nprot.2008.197

Bourbonnais R, Paice MG. 1988. Veratryl alcohol oxidases
from the lignin-degrading basidiomycete Pleurotus sajor-
caju. Biochem J 255:445–450. doi: 10.1042/bj2550445

Cavener DR. 1992. GMC oxidoreductases. A newly defined
family of homologous proteins with diverse catalytic
activities. J Mol Biol 223:811–814, doi:10.1016/0022-
2836(92)90992-S

Daniel G, Volc J, Filonova L, Plihal O, Kubátová E, Halada P.
2007. Characteristics of Gloeophyllum trabeum alcohol oxi-
dase, an extracellular source of H2O2 in brown rot decay
of wood. Appl Environ Microbiol 73:6241–6253,
doi:10.1128/AEM.00977-07

———, ———, Kubátová E. 1994. Pyranose oxidase, a major
source of H2O2 during wood degradation by Phanero-
chaete chrysosporium, Trametes versicolor and Oudemansiella
mucida. Appl Environ Microbiol 60:2524–2532.

———, ———, ———, Nilsson T. 1992. Ultrastructural and
immunocytochemical studies on the H2O2-producing
enzyme pyranose oxidase in Phanerochaete chrysosporium
grown under liquid culture conditions. Appl Environ
Microbiol 58:3667–3676.

Danneel HJ, Reichert A, Giffhorn F. 1994. Production, puri-
fication and characterization of an alcohol oxidase of
the ligninolytic fungus Peniophora gigantea. J Biotechnol
33:33–41, doi:10.1016/0168-1656(94)90096-5

———, Rössner E, Zeeck A, Giffhorn F. 1993. Purification
and characterization of a pyranose oxidase from the
basidiomycete Peniophora gigantea and chemical analyses
of its reaction products. Eur J Biochem 214:795–802.
doi: 10.1111/j.1432-1033.1993.tb17982.x

de Jong E, Cazemier AE, Field JA, de Bont JA. 1994. Physiolo-
gical role of chlorinated aryl alcohols biosynthesized de

novo by the white rot fungus Bjerkandera sp strain
BOS55. Appl Environ Microbiol 60:271–277.

———Field JA. 1997. Sulfur tuft and turkey tail: biosynthesis
and biodegradation of organohalogens by basidiomy-
cetes. Annu Rev Microbiol 51:375–414.

———, ———, Dings JAFM, Wijnberg JBPA, de Bont JAM.
1992. De novo biosynthesis of chlorinated aromatics by
the white-rot fungus Bjerkandera sp BOS55. Formation
of 3-chloro-anisaldehyde from glucose. FEBS Lett
305:220–224, doi:10.1016/0014-5793(92)80672-4

de Koker TH, Mozuch MD, Cullen D, Gaskell J, Kersten PJ.
2004. Isolation and purification of pyranose 2-oxidase
from Phanerochaete chrysosporium and characterization of
gene structure and regulation. Appl Environ Microbiol
70:5794–5800, doi:10.1128/AEM.70.10.5794-5800.2004

Dumonceaux TJ, Bartholomew KA, Charles TC, Moukha SM,
Archibald FS. 1998. Cloning and sequencing of a gene
encoding cellobiose dehydrogenase from Trametes versi-
color. Gene 210:211–219.

Durand D, Halldorsson BV, Vernot B. 2006. A hybrid micro-
macroevolutionary approach to gene tree reconstruc-
tion. J Comput Biol 13:320–335, doi:10.1089/cmb.2006.
13.320

Edgar RC. 2004. MUSCLE: multiple sequence alignment
with high accuracy and high throughput. Nucleic Acids
Res 32:1792–1797, doi:10.1093/nar/gkh340

Emanuelsson O, Nielsen H, Brunak S, von Heijne G. 2000.
Predicting subcellular localization of proteins based on
their N-terminal amino acid sequence. J Mol Biol
300:1005–1016, doi:10.1006/jmbi.2000.3903

Fernández IS, Ruiz-Dueñas FJ, Santillana E, Ferreira P, Martí-
nez MJ, Martínez AT, Romero A. 2009. Novel structural
features in the GMC family of oxidoreductases revealed
by the crystal structure of fungal aryl-alcohol oxidase.
Acta Crystallogr D Biol Crystallogr 65:1196–1205,
doi:10.1107/S0907444909035860

Ferreira P, Hernández-Ortega A, Herguedas B, Martínez AT,
Medina M. 2009. Aryl-alcohol oxidase involved in lignin
degradation: a mechanistic study based on steady and
pre-steady state kinetics and primary and solvent isotope
effects with two different alcohol substrates. J Biol Chem
284:24840–24847, doi:10.1074/jbc.M109.011593

———, ———, ———, Rencoret J, Gutiérrez A, Martínez
MJ, Jiménez-Barbero J, Medina M, Martínez AT. 2010.
Kinetic and chemical characterization of aldehyde oxi-
dation by fungal aryl-alcohol oxidase. Biochem J
425:585–593, doi:10.1042/BJ20091499

———, ———, Lucas F, Carro J, Herguedas B, Borrelli KW,
Guallar V, Martínez AT, Medina M. 2015. Aromatic
stacking interactions govern catalysis in aryl-alcohol oxi-
dase. FEBS J 282:3091–3106, doi:10.1111/febs.13221

———, Medina M, Guillén F, Martínez MJ, van Berkel WJH,
Martínez AT. 2005. Spectral and catalytic properties of
aryl-alcohol oxidase, a fungal flavoenzyme acting on
polyunsaturated alcohols. Biochem J 389:731–738,
doi:10.1042/BJ20041903

———, Ruiz-Dueñas FJ, Martínez MJ, van Berkel WJH, Mar-
tínez AT. 2006. Site-directed mutagenesis of selected
residues at the active site of aryl-alcohol oxidase, an

1114 MYCOLOGIA

http://dx.doi.org/10.1111/j.1574-6976.2008.00106.x
http://dx.doi.org/10.1002/yea.320020404
http://dx.doi.org/10.1002/yea.320020404
http://dx.doi.org/10.1016/j.biotechadv.2009.04.003
http://dx.doi.org/10.1006/abbi.1993.1098
http://dx.doi.org/10.1017/S1477200005001623
http://dx.doi.org/10.3852/13-003
http://dx.doi.org/10.1038/nprot.2008.197
http://dx.doi.org/10.1038/nprot.2008.197
http://dx.doi.org/10.1042/bj2550445
http://dx.doi.org/10.1016/0022-2836(92)90992-S
http://dx.doi.org/10.1016/0022-2836(92)90992-S
http://dx.doi.org/10.1128/AEM.00977-07
http://dx.doi.org/10.1016/0168-1656(94)90096-5
http://dx.doi.org/10.1111/j.1432-1033.1993.tb17982.x
http://dx.doi.org/10.1016/0014-5793(92)80672-4
http://dx.doi.org/10.1128/AEM.70.10.5794-5800.2004
http://dx.doi.org/10.1089/cmb.2006.13.320
http://dx.doi.org/10.1089/cmb.2006.13.320
http://dx.doi.org/10.1093/nar/gkh340
http://dx.doi.org/10.1006/jmbi.2000.3903
http://dx.doi.org/10.1107/S0907444909035860
http://dx.doi.org/10.1074/jbc.M109.011593
http://dx.doi.org/10.1042/BJ20091499
http://dx.doi.org/10.1111/febs.13221
http://dx.doi.org/10.1042/BJ20041903


H2O2-producing enzyme. FEBS J 273:4878–4888, doi:
10.1111/j.1742-4658.2006.05488.x

Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Hen-
rissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS,
Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Cou-
tinho PM, de Vries RP, Ferreira P, Findley K, Foster B,
Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C,
Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Koh-
ler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo
LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T,
Martin R, McLaughlin DJ, Morgenstern I, Morin E,
Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva
A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Same-
jima M, Schmutz J, Slot JC, St. John F, Stenlid J, Sun H,
Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro
A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hib-
bett DS. 2012. The Paleozoic origin of enzymatic lignin
decomposition reconstructed from 31 fungal genomes.
Science 336:1715–1719, doi:10.1126/science.1221748

———, Held BW, Riley R, Nagy LG, Koehler G, Ransdell AS,
Younus H, Chow J, Chiniqui J, Lipzen A, Tritt A, Sun H,
Haridas S, LaButti K, Ohm RA, Kües U, Blanchette RA,
Grigoriev IV, Minto RE, Hibbett DS. 2015. Evolution of
novel wood decay mechanisms in Agaricales revealed
by the genome sequences of Fistulina hepatica and Cylin-
drobasidium torrendii. Fungal Genet Biol 76:78–92,
doi:10.1016/j.fgb.2015.02.002

Fonseca MI, Farina JI, Castrillo ML, Rodriguez MD, Nuñes
CE, Villalba LL, Zapata PD. 2014. Biopulping of wood
chips with Phlebia brevispora BAFC 633 reduces lignin
content and improves pulp quality. Int Biodeterior Bio-
degrad 90:29–35, doi:10.1016/j.ibiod.2013.11.018

Frederick KR, Tung J, Emerick RS, Masiarz FR, Chamberlain
SH, Vasavada A, Chakraborty S, Schopter LM, Rosen-
berg S. 1990. Glucose oxidase from Aspergillus niger.
Cloning, gene sequence, secretion from Saccharomyces
cerevisiae and kinetic analysis of a yeast-derived enzyme.
J Biol Chem 265:3793–3802.

Gadda G. 2008. Hydride transfer made easy in the reaction of
alcohol oxidation catalyzed by flavin-dependent oxi-
dases. Biochemistry 47:13745–13753, doi:10.1021/
bi801994c

Goetghebeur M, Nicolas M, Brun S, Galzy P. 1992. Produc-
tion and excretion of benzyl alcohol oxidase in Botrytis
cinerea. Phytochemistry 31:413–416, doi:10.1016/0031-
9422(92)90008-E

González A, Grinbergs J, Griva E. 1986. Biologische Umwan-
dlung von Holz in Rinderfutter-‘Palo podrido’. Zen-
tralbl Mikrobiol 141:181–186, doi:10.1016/S0232-4393
(86)80056-7

Greene RV, Gould JM. 1984. Fatty acyl-coenzyme A oxidase
activity and H2O2 production in Phanerochaete chrysospor-
ium mycelia. Biochem Biophys Res Commun 118:437–
443, doi:10.1016/0006-291X(84)91322-6

Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M,
Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA,
Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T,
Rokhsar D, Dubchak I. 2012. The genome portal of
the Department of Energy Joint Genome Institute.
Nucleic Acids Res 40:D26–D32, doi:10.1093/nar/gkr947

Guillén F, Evans CS. 1994. Anisaldehyde and veratraldehyde
acting as redox cycling agents for H2O2 production by
Pleurotus eryngii. Appl Environ Microbiol 60:2811–2817.

———, Martínez AT, Martínez MJ. 1990. Production of
hydrogen peroxide by aryl-alcohol oxidase from the lig-
ninolytic fungus Pleurotus eryngii. Appl Microbiol Bio-
technol 32:465–469, doi:10.1007/BF00903784

———, ———, ———. 1992. Substrate specificity and prop-
erties of the aryl-alcohol oxidase from the ligninolytic
fungus Pleurotus eryngii. Eur J Biochem 209:603–611,
doi:10.1111/j.1432-1033.1992.tb17326.x

Gutiérrez A, Caramelo L, Prieto A, Martínez MJ, Martínez
AT. 1994. Anisaldehyde production and aryl-alcohol oxi-
dase and dehydrogenase activities in ligninolytic fungi
from the genus Pleurotus. Appl Environ Microbiol
60:1783–1788.

Hallberg BM, Leitner C, Haltrich D, Divne C. 2004. Crystal
structure of the 270 kDa homotetrameric lignin-degrad-
ing enzyme pyranose 2-oxidase. J Mol Biol 341:781–796,
doi:10.1016/j.jmb.2004.06.033

Hecht HJ, Kalisz HM, Hendle J, Schmid RD, Schomburg D.
1993. Crystal structure of glucose oxidase from Aspergil-
lus niger refined at 2.3 Å resolution. J Mol Biol
229:153–172, doi:10.1006/jmbi.1993.1015

Heinfling A, Martínez MJ, Martínez AT, Bergbauer M, Szew-
zyk U. 1998. Purification and characterization of perox-
idases from the dye-decolorizing fungus Bjerkandera
adusta. FEMS Microbiol Lett 165:43–50, doi:10.1016/
S0378-1097(98)00255-9

Henriksson G, Johansson G, Pettersson G. 2000. A critical
review of cellobiose dehydrogenases. J Biotechnol
78:93–113, doi:10.1016/S0168-1656(00)00206-6

Hernández-Ortega A, Borrelli K, Ferreira P, Medina M, Mar-
tínez AT, Guallar V. 2011a. Substrate diffusion and oxi-
dation in GMC oxidoreductases: an experimental and
computational study on fungal aryl-alcohol oxidase. Bio-
chem J 436:341–350, doi:10.1042/BJ20102090

———, Ferreira P, Martínez AT. 2012a. Fungal aryl-alcohol
oxidase: a peroxide-producing flavoenzyme involved in
lignin degradation. Appl Microbiol Biotechnol
93:1395–1410, doi:10.1007/s00253-011-3836-8.

———, ———, Merino P, Medina M, Guallar V, Martínez
AT. 2012b. Stereoselective hydride transfer by aryl-alco-
hol oxidase, a member of the GMC superfamily. Chem-
BioChem 13:427–435, doi:10.1002/cbic.201100709

———, Lucas F, Ferreira P, Medina M, Guallar V, Martínez
AT. 2011b. Modulating O2 reactivity in a fungal flavoen-
zyme: involvement of aryl-alcohol oxidase Phe-501
contiguous to catalytic histidine. J Biol Chem 286:
41105–41114, doi:10.1074/jbc.M111.282467

———, ———, ———, ———, ———,———. 2012c. Role
of active site histidines in the two half-reactions of
the aryl-alcohol oxidase catalytic cycle. Biochemistry 51:
6595–6608, doi:10.1021/bi300505z

Hibbett DS, Stajich JE, Spatafora JW. 2013. Toward genome-
enabled mycology. Mycologia 105:1339–1349, doi:10.
3852/13-196

Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett DS, Hen-
rissat B, Cullen D. 2013. Genomewide analysis of
polysaccharides degrading enzymes in 11 white- and

FERREIRA ET AL.: GMC GENES IN POLYPORALES GENOMES 1115

http://dx.doi.org/10.1111/j.1742-4658.2006.05488.x
http://dx.doi.org/10.1126/science.1221748
http://dx.doi.org/10.1016/j.fgb.2015.02.002
http://dx.doi.org/10.1016/j.ibiod.2013.11.018
http://dx.doi.org/10.1021/bi801994c
http://dx.doi.org/10.1021/bi801994c
http://dx.doi.org/10.1016/0031-9422(92)90008-E
http://dx.doi.org/10.1016/0031-9422(92)90008-E
http://dx.doi.org/10.1016/S0232-4393(86)80056-7
http://dx.doi.org/10.1016/S0232-4393(86)80056-7
http://dx.doi.org/10.1016/0006-291X(84)91322-6
http://dx.doi.org/10.1093/nar/gkr947
http://dx.doi.org/10.1007/BF00903784
http://dx.doi.org/10.1111/j.1432-1033.1992.tb17326.x
http://dx.doi.org/10.1016/j.jmb.2004.06.033
http://dx.doi.org/10.1006/jmbi.1993.1015
http://dx.doi.org/10.1016/S0378-1097(98)00255-9
http://dx.doi.org/10.1016/S0378-1097(98)00255-9
http://dx.doi.org/10.1016/S0168-1656(00)00206-6
http://dx.doi.org/10.1042/BJ20102090
http://dx.doi.org/10.1007/s00253-011-3836-8.
http://dx.doi.org/10.1002/cbic.201100709
http://dx.doi.org/10.1074/jbc.M111.282467
http://dx.doi.org/10.1021/bi300505z
http://dx.doi.org/10.3852/13-196
http://dx.doi.org/10.3852/13-196


brown-rot Polyporales provides insight into mechanisms
of wood decay. Mycologia 105:1412–1427, doi:10.3852/
13-072

Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-
Collier CJ, Nakai K. 2007. WoLF PSORT: protein locali-
zation predictor. Nucleic Acids Res 35:W585–W587,
doi:10.1093/nar/gkm259

Kelley RL, Reddy CA. 1986. Identification of glucose oxidase
activity as the primary source of hydrogen peroxide pro-
duction in ligninolytic cultures of Phanerochaete chry‐
sosporium. Arch Microbio 144:248–253, doi:10.1007/
BF00410957

Kersten P, Cullen D. 2007. Extracellular oxidative systems of
the lignin-degrading basidiomycete Phanerochaete chrysos-
porium. Fungal Genet Biol 44:77–87, doi:10.1016/j.
fgb.2006.07.007

———, ———. 2014. Copper radical oxidases and related
extracellular oxidoreductases of wood-decay Agaricomy‐
cetes. Fungal Genet Biol 72:124–130, doi:10.1016/j.
fgb.2014.05.011

———, Kirk TK. 1987. Involvement of a new enzyme, glyoxal
oxidase, in extracellular H2O2 production by Phanero-
chaete chrysosporium. J Bacteriol 169:2195–2201.

Kiess M, Hecht HJ, Kalisz HM. 1998. Glucose oxidase from
Penicillium amagasakiense. Primary structure and compar-
ison with other glucose-methanol-choline (GMC) oxi-
doreductases. Eur J Biochem 252:90–99, doi:10.1046/
j.1432-1327.1998.2520090.x

Kimura Y, Asada Y, Oka T, Kuwahara M. 1991. Molecular ana-
lysis of a Bjerkandera adusta lignin peroxidase gene.
Appl Microbiol Biotechnol 35:510–514, doi:10.1007/
BF00169758

Kirk TK. 1975. Effects of brown-rot fungus Lenzites trabea on
lignin of spruce wood. Holzforschung 29:99–107,
doi:10.1515/hfsg.1975.29.3.99

———, Farrell RL. 1987. Enzymatic “combustion”: the
microbial degradation of lignin. Annu Rev Microbiol
41:465–505, doi:10.1146/annurev.mi.41.100187.002341

Kittl R, Sygmund C, Halada P, Volc J, Divne C, Haltrich D,
Peterbauer CK. 2008. Molecular cloning of three pyr‐
anose dehydrogenase-encoding genes from Agaricus
meleagris and analysis of their expression by real-time
RT-PCR. Curr Genet 53:117–127, doi:110.1007/s00294-
007-0171-9

Kovalchuk A, Lee YH, Asiegbu FO. 2013. Diversity and evolu-
tion of ABC proteins in basidiomycetes. Mycologia
105:1456–1470, doi:10.3852/13-001

Kremer SM, Wood PM. 1992. Production of Fenton’s reagent
by cellobiose oxidase from cellulolytic cultures of Phaner-
ochaete chrysosporium. Eur J Biochem 208:807–814.

Krondorfer I, Brugger D, Paukner R, Scheiblbrandner S, Pir-
ker KF, Hofbauer S, Furtmuller PG, Obinger C, Haltrich
D, Peterbauer CK. 2014a. Agaricus meleagris pyranose
dehydrogenase: influence of covalent FAD linkage on
catalysis and stability. Arch Biochem Biophys 558:111–
119, doi:10.1016/j.abb.2014.07.008

———, Lipp K, Brugger D, Staudigl P, Sygmund C, Haltrich
D, Peterbauer CK. 2014b. Engineering of pyranose
dehydrogenase for increased oxygen reactivity. PLoS
One 9:e91145, doi:10.1371/journal.pone.0091145

Kruså M, Lennholm H, Henriksson G. 2008. Pretreatment of
cellulose by cellobiose dehydrogenase increases the
degradation rate by hydrolytic cellulases. Cell Chem
Technol 41:105–111.

Kujawa M, Volc J, Halada P, Sedmera P, Divne C, Sygmund C,
Leitner C, Peterbauer C, Haltrich D. 2007. Properties of
pyranose dehydrogenase purified from the litter-degrad-
ing fungus Agaricus xanthoderma. FEBS J 274:879–894,
doi:10.1111/j.1742-4658.2007.05634.x

Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Swee-
ney MD. 2011. Oxidoreductive cellulose depolymeriza-
tion by the enzymes cellobiose dehydrogenase and
glycoside hydrolase 61. Appl Environ Microbiol
77:7007–7015, doi:10.1128/AEM.05815-11

Leferink NGH, Heuts DPHM, Fraaije MW, van Berkel WJH.
2008. The growing VAO flavoprotein family. Arch Bio-
chem Biophys 474:292–301, doi:10.1016/j.abb.2008.
01.027

Leitner C, Haltrich D, Nidetzky B, Prillinger H, Kulbe KD.
1998. Production of a novel pyranose 2-oxidase by basi-
diomycete Trametes multicolor. Appl Biochem Biotechnol
70:237–248, doi:10.1007/BF02920140

———, Volc J, Haltrich D. 2001. Purification and characteri-
zation of pyranose oxidase from the white-rot fungus
Trametes multicolor. Applied Environ Microbiol 67:3636–
3644, doi:10.1128/AEM.67.8.3636-3644.2001

Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B.
2013. Expansion of the enzymatic repertoire of the
CAZy database to integrate auxiliary redox enzymes.
Biotechnol Biofuels 6:41, doi:10.1186/1754-6834-6-41.

Martínez AT, Barrasa JM, Martínez MJ, Almendros G, Blanco
M, González AE. 1995. Ganoderma australe: a fungus
responsible for extensive delignification of some Austral
hardwoods. In: Buchanan PK, Hseu RS, Moncalvo JM,
eds. Ganoderma. Systematics, phytopathology and phar-
macology. Taipei: National Taiwan Univ. 1995 p 67–77.

———, Rencoret J, Nieto L, Jiménez-Barbero J, Gutiérrez A,
del Río JC. 2011. Selective lignin and polysaccharide
removal in natural fungal decay of wood as evidenced
by in situ structural analyses. Environ Microbiol 13:96–
107, doi:10.1111/j.1462-2920.2010.02312.x

———, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez
A. 2009. Enzymatic delignification of plant cell wall:
from nature to mill. Curr Opin Biotechnol 20:348–357,
doi:10.1016/j.copbio.2009.05.002

———, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S,
Guillén F, Martínez MJ, Gutiérrez A, del Río JC. 2005.
Biodegradation of lignocellulosics: microbiological, che-
mical and enzymatic aspects of fungal attack to lignin.
Int Microbiol 8:195–204.

Martinez D, Challacombe J, Morgenstern I, Hibbett DS,
Schmoll M, Kubicek CP, Ferreira P, Ruiz-Dueñas FJ,
Martínez AT, Kersten P, Hammel KE, Vanden Wymelen-
berg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS,
Larrondo LF, Canessa P, Vicuña R, Yadav J, Doddapa-
neni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza
JA, Master E, Henrissat B, Coutinho PM, Harris P, Mag-
nuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ,
Kues U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu
H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James

1116 MYCOLOGIA

http://dx.doi.org/10.3852/13-072
http://dx.doi.org/10.3852/13-072
http://dx.doi.org/10.1093/nar/gkm259
http://dx.doi.org/10.1007/BF00410957
http://dx.doi.org/10.1007/BF00410957
http://dx.doi.org/10.1016/j.fgb.2006.07.007
http://dx.doi.org/10.1016/j.fgb.2006.07.007
http://dx.doi.org/10.1016/j.fgb.2014.05.011
http://dx.doi.org/10.1016/j.fgb.2014.05.011
http://dx.doi.org/10.1046/j.1432-1327.1998.2520090.x
http://dx.doi.org/10.1046/j.1432-1327.1998.2520090.x
http://dx.doi.org/10.1007/BF00169758
http://dx.doi.org/10.1007/BF00169758
http://dx.doi.org/10.1515/hfsg.1975.29.3.99
http://dx.doi.org/10.1146/annurev.mi.41.100187.002341
http://dx.doi.org/110.1007/s00294-007-0171-9
http://dx.doi.org/110.1007/s00294-007-0171-9
http://dx.doi.org/10.3852/13-001
http://dx.doi.org/10.1016/j.abb.2014.07.008
http://dx.doi.org/10.1371/journal.pone.0091145
http://dx.doi.org/10.1111/j.1742-4658.2007.05634.x
http://dx.doi.org/10.1128/AEM.05815-11
http://dx.doi.org/10.1016/j.abb.2008.01.027
http://dx.doi.org/10.1016/j.abb.2008.01.027
http://dx.doi.org/10.1007/BF02920140
http://dx.doi.org/10.1128/AEM.67.8.3636-3644.2001
http://dx.doi.org/10.1186/1754-6834-6-41.
http://dx.doi.org/10.1111/j.1462-2920.2010.02312.x
http://dx.doi.org/10.1016/j.copbio.2009.05.002


T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokh-
sar D, Berka R, Cullen D. 2009. Genome, transcriptome
and secretome analysis of wood-decay fungus Postia pla-
centa supports unique mechanisms of lignocellulose con-
version. Proc Natl Acad Sci USA 106:1954–1959,
doi:10.1073/pnas.0809575106

———, Larrondo LF, Putnam N, Gelpke MD, Huang K,
Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Lari-
mer F, Coutinho PM, Henrissat B, Berka R, Cullen D,
Rokhsar D. 2004. Genome sequence of the lignocellu-
lose degrading fungus Phanerochaete chrysosporium strain
RP78. Nat Biotechnol 22:695–700, doi:10.1038/nbt967

Mgbeahuruike AC, Kovalchuk A, Asiegbu FO. 2013. Com-
parative genomics and evolutionary analysis of hydro-
phobins from three species of wood-degrading fungi.
Mycologia 105:1471–1478, doi:10.3852/13-077

Moukha SM, Dumonceaux TJ, Record E, Archibald FS. 1999.
Cloning and analysis of Pycnoporus cinnabarinus cello-
biose dehydrogenase. Gene 234:23–33. doi: 10.1016/
S0378-1119(99)00189-4

Muheim A, Waldner R, Leisola MSA, Fiechter A. 1990. An
extracellular aryl-alcohol oxidase from the white-rot fun-
gus Bjerkandera adusta. Enzyme Microb Technol 12:204–
209, doi:10.1016/0141-0229(90)90039-S

Nishida A, Eriksson K-E. 1987. Formation, purification and
partial characterization of methanol oxidase, a H2O2-
producing enzyme in Phanerochaete chrysosporium. Bio-
technol Appl Biochem 9:325–338.

Nyanhongo GS, Gubitz G, Sukyai P, Leitner C, Haltrich D,
Ludwig R. 2007. Oxidoreductases from Trametes spp.
in biotechnology: a wealth of catalytic activity. Food
Technol Biotechnol 45:250–268.

Ozimek P, Veenhuis M, van der Klei IJ. 2005. Alcohol oxi-
dase: a complex peroxisomal, oligomeric flavoprotein.
FEMS Yeast Res 5:975–983.

Peláez F, Martínez MJ, Martínez AT. 1995. Screening of 68
species of basidiomycetes for enzymes involved in lignin
degradation. Mycol Res 99:37–42, doi:10.1016/S0953-
7562(09)80313-4

Peterbauer CK, Volc J. 2010. Pyranose dehydrogenases: bio-
chemical features and perspectives of technological
applications. Appl Microbiol Biotechnol 85:837–848,
doi:10.1007/s00253-009-2226-y

Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. Sig-
nalP 4.0: discriminating signal peptides from transmem-
brane regions. Nat Methods 8:785–786, doi:10.1038/
nmeth.1701

Pitsawong W, Sucharitakul J, Prongjit M, Tan TC, Spadiut O,
Haltrich D, Divne C, Chaiyen P. 2010. A conserved
active-site threonine is important for both sugar and fla-
vin oxidations of pyranose 2-oxidase. J Biol Chem
285:9697–9705, doi:10.1074/jbc.M109.07324h

Prongjit M, Sucharitakul J, Wongnate T, Haltrich D, Chaiyen
P. 2009. Kinetic mechanism of pyranose 2-oxidase from
Trametes multicolor. Biochemistry 48:4170–4180, doi:10.
1021/bi802331r

Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F,
Davis MF, Davison BH, Dixon RA, Gilna P, Keller M,
Langan P, Naskar AK, Saddler JN, Tschaplinski T,
Tuskan GA, Wyman CE. 2014. Lignin valorization:

improving lignin processing in the biorefinery. Science
344: 1246843, doi:10.1126/science.1246843

Raices M, Montesino R, Cremata J, Garcia B, Perdomo W,
Szabo I, Henriksson G, Hallberg BM, Pettersson G,
Johansson G. 2002. Cellobiose quinone oxidoreductase
from the white-rot fungus Phanerochaete chrysosporium is
produced by intracellular proteolysis of cellobiose dehy-
drogenase. Biochim Biophys Acta 1576:15–22, doi:10.
1016/S0167-4781(02)00243-9

———, Paifer E, Cremata J, Montesino R, Stahlberg J, Divne
C, Szabo IJ, Henriksson G, Johansson G, Pettersson G.
1995. Cloning and characterization of a cDNA encoding
a cellobiose dehydrogenase from the white rot fungus
Phanerochaete chrysosporium. FEBS Lett 369:233–238,
doi:10.1016/0014-5793(95)00758-2

Ralph JP, Graham LA, Catcheside DEA. 1996. Extracellular
oxidases and the transformation of solubilized low-rank
coal by wood-rot fungi. Appl Microbiol Biotechnol
46:226–232, doi:10.1007/s002530050809

Romero E, Ferreira P, Martínez AT, Martínez MJ. 2009.
New oxidase from Bjerkandera arthroconidial anamorph
that oxidizes both phenolic and nonphenolic benzyl
alcohols. Biochim Biophys Acta 1794:689–697, doi:10.
1016/j.bbapap.2008.11.013

———, Gadda G. 2014. Alcohol oxidation by flavoenzymes.
Biomol Concepts 5:299–318, doi:10.1515/bmc-2014-0016

———, Martínez AT, Martínez MJ. 2010. Molecular charac-
terization of a new flavooxidase from a Bjerkandera adu-
sta anamorph. Proc. OESIB, Santiago de Compostela,
14–15 September. Feijoo G, Moreira MT, eds; ISBN-13:978-
84-614-2824-3. p 86–91.

Ruiz-Dueñas FJ, Ferreira P, Martínez MJ, Martínez AT. 2006.
In vitro activation, purification and characterization of
Escherichia coli-expressed aryl-alcohol oxidase, a unique
H2O2-producing enzyme. Protein Express Purif 45:191–
199, doi:10.1016/j.pep.2005.06.003

———, Lundell T, Floudas D, Nagy LG, Barrasa JM, Hibbett
DS, Martínez AT. 2013. Lignin-degrading peroxidases in
Polyporales: an evolutionary survey based on 10
sequenced genomes. Mycologia 105:1428–1444,
doi:10.3852/13-059

———, Martínez AT. 2009. Microbial degradation of lignin:
how a bulky recalcitrant polymer is efficiently recycled
in nature and how we can take advantage of this. Microb
Biotechnol 2:164–177, doi:10.1111/j.1751-7915.2008.
00078.x

Sannia G, Limongi P, Cocca E, Buonocore F, Nitti G, Giar-
dina P. 1991. Purification and characterization of a vera-
tryl alcohol oxidase enzyme from the lignin-degrading
basidiomycete Pleurotus ostreatus. Biochim Biophys Acta
1073:114–119, doi:10.1016/0304-4165(91)90190-R

Schmidhalter DR, Canevascini G. 1993. Isolation and charac-
terization of the cellobiose dehydrogenase from the
brown-rot fungus Coniophora puteana (Schum ex Fr.)
Karst. Arch Biochem Biophys 300:559–563, doi:10.1006/
abbi.1993.1077

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid boot-
strap algorithm for the RAxML web servers. Syst Biol
57:758–771, doi:10.1080/10635150802429642

FERREIRA ET AL.: GMC GENES IN POLYPORALES GENOMES 1117

http://dx.doi.org/10.1073/pnas.0809575106
http://dx.doi.org/10.1038/nbt967
http://dx.doi.org/10.3852/13-077
http://dx.doi.org/10.1016/S0378-1119(99)00189-4
http://dx.doi.org/10.1016/S0378-1119(99)00189-4
http://dx.doi.org/10.1016/0141-0229(90)90039-S
http://dx.doi.org/10.1016/S0953-7562(09)80313-4
http://dx.doi.org/10.1016/S0953-7562(09)80313-4
http://dx.doi.org/10.1007/s00253-009-2226-y
http://dx.doi.org/10.1038/nmeth.1701
http://dx.doi.org/10.1038/nmeth.1701
http://dx.doi.org/10.1074/jbc.M109.07324h
http://dx.doi.org/10.1021/bi802331r
http://dx.doi.org/10.1021/bi802331r
http://dx.doi.org/10.1126/science.1246843
http://dx.doi.org/10.1016/S0167-4781(02)00243-9
http://dx.doi.org/10.1016/S0167-4781(02)00243-9
http://dx.doi.org/10.1016/0014-5793(95)00758-2
http://dx.doi.org/10.1007/s002530050809
http://dx.doi.org/10.1016/j.bbapap.2008.11.013
http://dx.doi.org/10.1016/j.bbapap.2008.11.013
http://dx.doi.org/10.1515/bmc-2014-0016
http://dx.doi.org/10.1016/j.pep.2005.06.003
http://dx.doi.org/10.3852/13-059
http://dx.doi.org/10.1111/j.1751-7915.2008.00078.x
http://dx.doi.org/10.1111/j.1751-7915.2008.00078.x
http://dx.doi.org/10.1016/0304-4165(91)90190-R
http://dx.doi.org/10.1006/abbi.1993.1077
http://dx.doi.org/10.1006/abbi.1993.1077
http://dx.doi.org/10.1080/10635150802429642


Sucharitakul J, Prongjit M, Haltrich D, Chaiyen P. 2008.
Detection of a C4a-hydroperoxyflavin intermediate in
the reaction of a flavoprotein oxidase. Biochemistry
47:8485–8490, doi:10.1021/bi801039d

———, Wongnate T, Chaiyen P. 2010. Kinetic isotope effects
on the noncovalent flavin mutant protein of pyranose 2-
oxidase reveal insights into the flavin reduction mechan-
ism. Biochemistry 49:3753–3765, doi:10.1021/bi100187b

———, ———, ———. 2011. Hydrogen peroxide elimina-
tion from C4a-hydroperoxyflavin in a flavoprotein oxi-
dase occurs through a single proton transfer from
flavin N5 to a peroxide leaving group. J Biol Chem
286:16900–16909, doi:10.1074/jbc.M111.222976

Sulej J, Janusz G, Osinska-Jaroszuk M, Malek P, Mazur A,
Komaniecka I, Choma A, Rogalski J. 2013. Characteriza-
tion of cellobiose dehydrogenase and its FAD-domain
from the ligninolytic basidiomycete Pycnoporus sangui-
neus. Enzyme Microb Technol 53:427–437, doi:10.
1016/j.enzmictec.2013.09.007

Syed K, Nelson DR, Riley R, Yadav JS. 2013. Genomewide
annotation and comparative genomics of cytochrome
P450 monooxygenases (P450s) in the Polyporale species
Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora.
Mycologia 105:1445–1455, doi:10.3852/13-002

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar
S. 2011. MEGA 5: molecular evolutionary genetics analy-
sis using maximum likelihood, evolutionary distance
and maximum parsimony methods. Mol Biol Evol
28:2731–2739, doi:10.1093/molbev/msr121

Tan TC, Spadiut O, Wongnate T, Sucharitakul J, Krondorfer
I, Sygmund C, Haltrich D, Chaiyen P, Peterbauer CK,
Divne C. 2013. The 1.6 angstrom crystal structure of pyr-
anose dehydrogenase from Agaricus meleagris rationalizes
substrate specificity and reveals a flavin intermediate.
PLoS One 8:e53567, doi:10.1371/journal.pone.0053567

Urzúa U, Kersten PJ, Vicuña R. 1998. Manganese peroxidase-
dependent oxidation of glyoxylic and oxalic acids
synthesized by Ceriporiopsis subvermispora produces extra-
cellular hydrogen peroxide. Appl Environ Microbiol
64:68–73.

Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G,
Ralph J, Skyba O, Mansfield SD, Blanchette RA, Marti-
nez D, Grigoriev I, Kersten PJ, Cullen D. 2010. Compara-
tive transcriptome and secretome analysis of wood decay
fungi Postia placenta and Phanerochaete chrysosporium. Appl
Environ Microbiol 76:3599–3610, doi:10.1128/AEM.
00058-10

Varela E, Guillén F, Martínez AT, Martínez MJ. 2001. Expres-
sion of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus
nidulans: purification and characterization of the recom-
binant enzyme. Biochim Biophys Acta 1546:107–113,
doi:10.1016/S0167-4838(00)00301-0

———, Martínez AT, Martínez MJ. 1999. Molecular cloning
of aryl-alcohol oxidase from Pleurotus eryngii, an enzyme
involved in lignin degradation. Biochem J 341:113–117.
doi: 10.1042/0264-6021:3410113

———, ———, ———. 2000. Southern blot screening for
lignin peroxidase and aryl-alcohol oxidase genes in 30
fungal species. J Biotechnol 83:245–251, doi:10.1016/
S0168-1656(00)00323-0

Vecerek B, Maresova H, Kocanova M, Kyslik P. 2004. Molecu-
lar cloning and expression of the pyranose 2-oxidase
cDNA from Trametes ochracea MB49 in Escherichia coli.
Appl Microbiol Biotechnol 64:525–530, doi:10.1007/
s00253-003-1516-z

Volc J, Kubátová E, Daniel G, Prikrylova V. 1996. Only C-2 spe-
cific glucose oxidase activity is expressed in ligninolytic cul-
tures of the white-rot fungus Phanerochaete chrysosporium.
Arch Microbiol 165:421–424, doi:10.1007/s002030050348

———, ———, ———, Sedmera P, Haltrich D. 2001.
Screening of basidiomycete fungi for the quinone-
dependent sugar C-2/C-3 oxidoreductase, pyranose
dehydrogenase, and properties of the enzyme from
Macrolepiota rhacodes. Arch Microbiol 176:178–186,
doi:10.1007/s002030100308

———, ———, Wood DA, Daniel G. 1997. Pyranose 2-dehy-
drogenase, a novel sugar oxidoreductase from the basi-
diomycete fungus Agaricus bisporus. Arch Microbiol
167:119–125, doi:10.1007/s002030050424

Westermark U, Eriksson KE. 1974. Cellobiose:quinone oxi-
doreductase; a new wood-degrading enzyme from
white-rot fungi. Acta Chem Scand B 28:209–214, doi:10.
3891/acta.chem.scand.28b-0209

Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J,
Schweizer ES, Whittaker JW. 1996. Glyoxal oxidase from
Phanerochaete chrysosporium is a new radical-copper oxidase.
J Biol Chem 271:681–687. doi: 10.1074/jbc.271.2.681

Wierenga RK, Terpstra P, Hol WGL. 1986. Prediction of the
occurrence of the ADP-binding bab-fold in proteins,
using an amino acid sequence fingerprint. J Mol Biol
187:101–107, doi: 10.3891/acta.chem.scand.28b-0209

Witt S, Wohlfahrt G, Schomburg D, Hecht HJ, Kalisz HM.
2000. Conserved arginine-516 of Penicillium amagasa-
kiense glucose oxidase is essential for the efficient bind-
ing of b-D-glucose. Biochem J 347:553–559, doi:10.
1042/0264-6021:3470553

Wohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM,
Hecht H-J. 1999. 1.8 and 1.9 Å resolution structures of
the Penicillium amagasakiense and Aspergillus niger glucose
oxidase as a basis for modeling substrate complexes.
Acta Crystallogr D Biol Crystallogr 55:969–977, doi:10.
1107/S0907444999003431

Wongnate T, Chaiyen P. 2013. The substrate oxidation
mechanism of pyranose 2-oxidase and other related
enzymes in the glucose-methanol-choline superfamily.
FEBS J 280:3009–3027, doi:10.1111/febs.12280

———, Sucharitakul J, Chaiyen P. 2011. Identification of a
catalytic base for sugar oxidation in the pyranose-2 oxi-
dation reaction. ChemBioChem 12:2577–2586, doi:10.
1002/cbic.201100564

———, Surawatanawong P, Visitsatthawong S, Sucharitakul J,
Scrutton NS, Chaiyen P. 2014. Proton-coupled electron
transfer and adduct configuration are important for
C4a-hydroperoxyflavin formation and stabilization in a
flavoenzyme. J Am Chem Soc 136:241–253, doi:10.
1021/ja4088055

Wood JD, Wood PM. 1992. Evidence that cellobiose-quinone
oxidoreductase from Phanerochaete chrysosporium is a
breakdown product of cellobiose oxidase. Biochim Bio-
phys Acta 1119:90–96, doi:10.1016/0167-4838(92)90239-A

1118 MYCOLOGIA

http://dx.doi.org/10.1021/bi801039d
http://dx.doi.org/10.1021/bi100187b
http://dx.doi.org/10.1074/jbc.M111.222976
http://dx.doi.org/10.1016/j.enzmictec.2013.09.007
http://dx.doi.org/10.1016/j.enzmictec.2013.09.007
http://dx.doi.org/10.3852/13-002
http://dx.doi.org/10.1093/molbev/msr121
http://dx.doi.org/10.1371/journal.pone.0053567
http://dx.doi.org/10.1128/AEM.00058-10
http://dx.doi.org/10.1128/AEM.00058-10
http://dx.doi.org/10.1016/S0167-4838(00)00301-0
http://dx.doi.org/10.1042/0264-6021:3410113
http://dx.doi.org/10.1016/S0168-1656(00)00323-0
http://dx.doi.org/10.1016/S0168-1656(00)00323-0
http://dx.doi.org/10.1007/s00253-003-1516-z
http://dx.doi.org/10.1007/s00253-003-1516-z
http://dx.doi.org/10.1007/s002030050348
http://dx.doi.org/10.1007/s002030100308
http://dx.doi.org/10.1007/s002030050424
http://dx.doi.org/10.3891/acta.chem.scand.28b-0209
http://dx.doi.org/10.3891/acta.chem.scand.28b-0209
http://dx.doi.org/10.1074/jbc.271.2.681
http://dx.doi.org/10.3891/acta.chem.scand.28b-0209
http://dx.doi.org/10.1042/0264-6021:3470553
http://dx.doi.org/10.1042/0264-6021:3470553
http://dx.doi.org/10.1107/S0907444999003431
http://dx.doi.org/10.1107/S0907444999003431
http://dx.doi.org/10.1111/febs.12280
http://dx.doi.org/10.1002/cbic.201100564
http://dx.doi.org/10.1002/cbic.201100564
http://dx.doi.org/10.1021/ja4088055
http://dx.doi.org/10.1021/ja4088055
http://dx.doi.org/10.1016/0167-4838(92)90239-A


Yelle DJ,Wei DS, Ralph J,Hammel KE. 2011.Multidimensional
NMR analysis reveals truncated lignin structures in wood
decayed by the brown-rot basidiomycete. Environ Micro-
biol 13:1091–1100, doi:10.1111/j.1462-2920.2010.02417.x

Zámocký M, Hallberg M, Ludwig R, Divne C, Haltrich D.
2004. Ancestral gene fusion in cellobiose dehydro-
genases reflects a specific evolution of GMC oxido‐

reductases in fungi. Gene 338:1–14, doi:10.1016/j.
gene.2004.04.025

———, Ludwig R, Peterbauer C, Hallberg BM, Divne C,
Nicholls P, Haltrich D. 2006. Cellobiose dehydrogenase
—a flavocytochrome from wood-degrading, phytopatho-
genic and saprotrophic fungi. Curr Protein Pept Sci
7:255–280, doi:10.2174/138920306777452367

FERREIRA ET AL.: GMC GENES IN POLYPORALES GENOMES 1119

http://dx.doi.org/10.1111/j.1462-2920.2010.02417.x
http://dx.doi.org/10.1016/j.gene.2004.04.025
http://dx.doi.org/10.1016/j.gene.2004.04.025
http://dx.doi.org/10.2174/138920306777452367



