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ABSTRACT: Understanding the molecular determinants of enzyme performance is of
primary importance for the rational design of ad hoc mutants. A novel approach, which
combines efficient conformational sampling and quick reactivity scoring, is used here to
shed light on how substrate oxidation was improved during the directed evolution
experiment of a fungal laccase (from Pycnoporus cinnabarinus), an industrially relevant class
of oxidoreductases. It is found that the enhanced activity of the evolved enzyme is mainly
the result of substrate arrangement in the active site, with no important change in the
redox potential of the T1 copper. Mutations at the active site shift the binding mode into a
more buried substrate position and provide a more favorable electrostatic environment for
substrate oxidation. As a consequence, engineering the binding event seems to be a viable
way to in silico evolution of oxidoreductases.

Enzyme engineering is a fast growing research field, mainly
as a result of recent developments in directed evolution,

rational mutagenesis, and in silico techniques.1,2 Laccases (EC
1.10.3.2) are multicopper oxidases that reduce oxygen to water
through one-electron oxidation of a reducing substrate.3−5

Their broad substrate preference, the use of oxygen as final
electron acceptor, and the production of water as sole
byproduct make them suitable for sustainable chemistry.6 The
active core of this class of enzymes consists of four copper ions
arranged in two clusters: the T1 copper, placed in proximity of
the protein surface, and the T2/T3 trinuclear cluster (TNC),
buried in the protein interior. Four substrate molecules are
oxidized in sequence by the T1 copper, which transfers the
electrons, one by one, against an uphill redox potential
gradient7 to the TNC, where oxygen is reduced. The overall
correlation of the rate constant (kcat) with the redox potential
difference (ΔE°) between the T1 copper and the substrate8−10

suggests that (i) the T1 copper reduction is the rate-
determining step of the catalytic process and (ii) the rate of
this step is determined by the free energy difference between
products and reactants. The latter point is likely a consequence
of the high reorganization energy that accompanies substrate
oxidation.10−12 For these reasons, the redox potential of the T1
copper, which ranges from 0.4 to 0.8 V versus normal hydrogen
electrode (NHE), is considered to be the key parameter for
substrate oxidation.3 Enhancing this quantity through muta-
genesis would, in principle, allow us to speed up the oxidation
of the existing substrates and expand the chemical space of

laccases. In this way, new doors to novel applications of these
enzymes, which already encompass textile and food industry,
bioremediation, forestry, and organic synthesis, would be
opened.6

Even if some determinants of the redox potential of T1 are
known,13−15 it is not clear yet how to effectively increase it.
Furthermore, the ΔE° versus log kcat correlation can show
significant deviation from linearity.16 The oxidation of
syringaldazine by Rhizoctonia solani (RsL) and Myceliophthora
thermophila (MtL) laccases is a case in point.17 Although the
redox potential of RsL is 250 mV higher than in MtL, its kcat
was found to be 8 times smaller.17 In another experiment, Xu
and coworkers decreased the redox potential of Trametes villosa
laccase (TvL) by 110 mV mutating the axial phenalanine to
methionine: surprisingly, the turnover number slightly
increased.18 Duraõ et al. showed that 93 and 60 mV increase
in redox potential through mutation of the axial ligand in a
bacterial laccase corresponded to a large decrease in kcat against
three different substrates.19 Apart from steric hindrance issues
for bulky substrates,10 which can be overcome through site-
directed mutagenesis of the enzyme pocket,20 these deviations
could be ascribed to the “goodness” of the Michaelis complex,
meaning to which extent its structure serves or hinders the ET
reaction. Indeed, its conformation has strong influence on: (i)
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the electrostatic environment21 around the substrate which
shifts its highest occupied molecular orbital (HOMO) energy
perturbing its ionization potential22 and electronic coupling;12

(ii) the solvent exposure of the complex, which affects
reorganization energy;13,23 and (iii) the donor−acceptor
distance, one of the main determinants of the electronic
coupling.24

In this work, we use a new simulation protocol to rationalize
by first-principles the results of a recent25 directed evolution
study,2 an experimental technique mimicking natural selection
to evolve proteins toward a user-defined goal. We aim at a
molecular understanding of how mutations accumulated
through in vitro evolution lead to improved catalytic
oxidation,26 providing physicochemical grounds for future
rational design efforts. In addition, we propose our protocol
as an alternative for computational engineering of oxidor-
eductases. At the heart of our methodology is the combination
of efficient conformational sampling techniques and quantum-
chemical reactivity scoring based on changes in substrate’s spin
density. The enzyme−substrate conformational space nearby
the T1 pocket is sampled with PELE,27 a Monte Carlo
algorithm that combines protein structure prediction algo-
rithms with ligand and protein structural perturbations.28 As
recently shown, PELE quickly provides a complete protein−
ligand energy landscape exploration (and free energies when
combined with Markov state model analysis).29 Then, 20
structures within 5 kcal/mol of the lowest binding energy pose
are randomly selected and their reactivity scored evaluating the
amount of spin density localized on the substrate with hybrid
quantum mechanics−molecular mechanics (QM−MM) calcu-
lations.30 Spin densities, which have been used to study
oxidation mechanisms,31,32 estimate electron-transfer (ET)
pathways33,34 and so on and show whether an unpaired
electron is energetically more stable in donor or acceptor
molecular orbitals. Therefore, its variations are expected to
reflect changes in the ET driving force. This is confirmed in
previous experimental studies, which reveal a linear relationship
between the amount of spin density on the donor and its
reduction/oxidation potential in ET proteins35 and small
aromatic compounds.36 Moreover, preliminary calculations
(details are provided in the Supporting Information (SI))
display a straight correlation between the spin density and the
specificity constant of a number of para-substituted phenols
(Table S1 and Figure S2 in the SI). Therefore, QM−MM spin
densities are suitable to score ET reactivity. Along this
descriptor, changes in electron coupling and solvent reorgan-
ization energy can be qualitatively predicted in terms of donor−
acceptor distance24,37 and the substrate’s solvent-accessible
surface area (SASA)23 of the poses generated with PELE.
Monitoring these quantities is necessary: An increase in spin
density upon mutation does not guarantee an improvement in

the rate constant if the donor−acceptor distance or SASA
undergoes a large increase. Although a rigorous computation of
Marcus equation’s parameters is possible,38−41 this would be far
more expensive and therefore unsuitable for screening a large
number of mutants in a reasonable time, which is the ultimate
goal of our PELE+QM−MM computational procedure.
The template laccase of our reference experiment is the

Pycnoporus cinnabarinus laccase (PcL) and the substrates
employed to screen activity are 2,2′-azino-bis(3-ethylbenzo-
thiazoline-6-sulfonic acid) (ABTS) and 2,6-dimethoxyphenol
(DMP).25 As a result of the laboratory evolution, the turnover
number significantly improved in the final mutant, 3PO, for
both substrates (Table 1). The evolved laccase carries five
mutations: P394H and N208S, which are located in the T1
pocket, N331D and D341N, relatively close to the substrate
entrance, and R280H, located far away on the protein surface,
mainly affecting protein expression in Saccharomyces cervisae25

(Figure 1).

DMP Oxidation. In the first step of the simulation protocol,
the enzyme−substrate system is sampled within 20 Å of the T1
copper with 240 independent PELE simulations, each lasting 48
h. According to the computational results, wild type and mutant
have the same interaction energy with DMP, as shown in
Figure 2A,B. The lowest energy bound structures reveal that
PcL (wild type) has only one binding mode (1), also present in
3PO, depicted in red in Figure 2A,B. In this minimum DMP is
hydrogen-bonded to H456 and D206 (Figure 3A), likely the

Table 1. Experimental Kinetic Data, Simulated Average Spin Density on Substrate (ρs substrate) and Copper with Its
Coordinating Axial Atoms (ρs CuSNN), and Simulated Enzyme−Radical Stabilization of the Oxidation of DMP and ABTS by
PcL (Wild Type) and 3PO (Mutant) at pH 5

system KM
a kcat

a ρs substrate ρs CuSNN enzyme−radical stabilizationb

PcL-ABTS 0.020 ± 0.001 35.1 ± 0.9 0.85 0.15 −89.4
PcL-DMP 0.012 ± 0.002 10.0 ± 0.3 0.37 0.63 −81.2
3PO-ABTS 0.024 ± 0.002 482.6 ± 10.2 0.96 (0.86,c 1.00d) 0.04 −112.0
3PO-DMP 0.213 ± 0.013 196.9 ± 3.1 0.56 (0.34,e 0.66f) 0.44 −110.8

aExperimental data from ref 17. bValues in kcal/mol. cFigure 3C-like poses only (3). dFigure 3D-like poses only (4). eFigure 3A-like poses only (1).
fFigure 3B-like poses only (2).

Figure 1. Structure of PcL where the active site T1 copper (and its
coordination ligands) and mutated residues are highlighted in blue and
light brown, respectively.
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electron and proton acceptors, respectively.11,42 QM−MM
scoring, applied to the 20 structures randomly selected within 5

kcal/mol of the lowest binding energy pose gives a result of
0.37 and 0.34 (Table 1) for PcL and 3PO, meaning that 37 and
34% of one electron charge flowed from DMP to the T1 copper
center. Therefore, no improvement is found on passing from
the wild type to the mutant for binding mode 1. P394H and
N208S made room for an alternative enzyme−substrate
conformation (2) in 3PO, represented in blue in Figure 2B,
forming a hydrogen bond with H394 (Figure 3B). Importantly,
the spin density of 2 is now 0.66 (Table 1), significantly higher
than the one found for the wild type. Taking into account all of
the 20 selected structures in 3PO (mixing 1 and 2, as shown in
Figure 2B), the average substrate’s spin density is 0.56. The
larger donor−acceptor distance in 2 with respect to 1 (Figure
2B) clearly indicates that focusing exclusively on this parameter
is potentially misleading in ET rate scoring.
Structures within 3 Å RMSD of 2 represent only 0.2% of all

of the conformations generated during PELE simulation in PcL,
none of them within 5 kcal/mol of the lowest binding energy
structure. On the contrary the occurrence of 2 is roughly 50%
of the best 5 kcal/mol binding energy interval in 3PO. (Figure
2B). Then, oxidation is improved in the mutant by making this
second and more reactive binding mode significantly available
to the substrate. The increase in substrate’s spin density, which
translates into a larger ET driving force, goes together with a
reduction in donor−acceptor distance (Figure 2, for 1) and
ligand’s SASA (Figure S6 in the SI), influencing electron

Figure 2. Results of PELE conformational search for DMP ((A) PcL, (B) 3PO) and ABTS ((C) PcL, (D) 3PO). “Cu-Sub distance” is the distance
between the T1 copper and substrate’s center of mass. In panels A and B, binding modes similar to Figure 3A are represented in red, while binding
modes similar to Figure 3B are in blue. Only structures within 5 kcal/mol of the best pose has been represented with colors. Numbers in parentheses
label the binding modes depicted in Figure 3 and are used through the text.

Figure 3. Most reactive binding modes of the enzyme−substrate
complexes with spin density isosurfaces. Numbers in parentheses label
each binding mode and are used through the text.
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coupling and reorganization energy, resulting in an overall
increase in kcat.
Although KM increased by almost the same amount as kcat,

most industrial applications of enzyme catalysts work at high
substrate concentration. Under such conditions, kcat is the most
crucial component of catalytic efficiency. This is especially true
for laccases, where substrate oxidation is the rate-determining
step.10 For this reason, our aim is to efficiently score kcat
through the spin density rather than estimate KM. Despite that,
the KM increase can be rationalized as well. As previously noted,
protein−ligand interaction energies are virtually the same in
PcL and 3PO (Figure 2A,B). Meanwhile kcat largely improved,
increasing the Michaelis constant (from steady-state approx-
imation, KM = (koff + kcat)/kon,

43 where kon and koff are the
association and dissociation rate constants). Moreover, having
two highly accessible reacting binding modes that can be filled
simultaneously (as shown with ligand docking using Glide,44,45

Figure S4 in the SI) requires a higher concentration of substrate
to reach half of the maximum reaction rate.43

ABTS Oxidation. When simulating ABTS binding with PELE
(240 independent trajectories, 48 h each), a sharp minimum
(3) is located next to the active site in the wild-type Laccase
(Figure 3C). In the corresponding structures, ABTS forms
multiple hydrogen bonds; one of ABTS negatively charged
sulfonate groups interacts with N331 and N389, while the other
one interacts with two backbone hydrogens (Figure 3C). QM−
MM calculations yield an average substrate’s spin density of
0.85 for 3. Because of the N331D mutation, one stabilizing
asparagine−sulfonate interaction no longer occurs in 3PO, and
the depth of the previously mentioned minimum is sensibly
reduced (Figure 2D). Simultaneously the enzyme−substrate
interaction inside the T1 pocket is stabilized, as can be seen by
the clear appearance of a second minimum (4) within 8 Å of
the T1 copper. As a consequence, approximately one half of the
20 randomly picked structures populate this second minimum,
interacting with S208 and H394 (Figure 3D). The overall
substrate’s spin density for 3PO is 0.96 (being 1.00 for 4 and
0.86 for 3). It is important to bear in mind that absolute values
have limited physical meaning and attention should be paid
only to relative values within the same substrate. Similarly to
DMP, the most reactive pose, 4, is poorly accessible to the
native enzyme (5% occurrence) and never observed within 5
kcal/mol of the lowest binding energy value (Figure 2C).
Therefore, ABTS oxidation is improved by refining substrate
recognition, shifting the population in favor of the most reactive
binding mode, as observed for DMP oxidation. Moreover, in
ABTS the average decrease in donor−acceptor distance and
solvent exposure is more accentuated. (The substrate docks
deeper inside the protein.)
The experimental KM did not change significantly for ABTS.

This can be justified as a compensation between increased
affinity at 4 and higher rate constant because KM = (koff + kcat)/
kon. Moreover, contrary to DMP, at substrate saturation the
coexistence of 3 and 4 is implausible because ABTS carries two
negative charges that would repel each other at such a close
distance.
Redox Potential. To evaluate the possible effects of directed

evolution on T1 copper redox potential, we carried out two sets
of 5 ns molecular dynamics (MD) simulations of PcL and 3PO
(with no substrate), both in their oxidized and reduced states,
for a total of 8 (2 × 4) trajectories. Then, 10 equally spaced
snapshots in the 3.2 to 5.0 ns time interval were extracted from
each trajectory, and the ΔΔG of T1 copper reduction was

estimated with the linear response approximation15,39 (LRA).
The calculated ΔΔG is −0.84 and 0.70 kcal/mol in the first and
second set of MD simulations, respectively (+36 and −31 mV),
well below the accuracy of the method. Therefore, according to
the MD simulations, the redox potential is substantially
unchanged after laboratory evolution (as expected, only
P394H involves T1 copper’s second coordination sphere).
The driving force determinant must then originate from radical
substrate (oxidized product) stabilization or reactant destabi-
lization, the latter being discarded because enzyme−substrate
interaction energies are unchanged in DMP and even
improved, in the T1 pocket, in the case of ABTS (Figure 2).
Determinants of the Driving Force Improvement. As previously

stated, the reaction rate is mostly driven by the free-energy
difference between product and reactant of the first oxidation
step.10 This driving force is equal to the redox potential
difference between T1 copper and the oxidized substrate.
Because the metal redox potential and protein−reactant
interaction energies remain nearly identical in the mutant,
optimization of the enzyme pocket toward the oxidized
substrate must play a major role. To assess this point, we set
up a new PELE simulation (48 independent trajectories, 48 h
each) in which the substrate is modeled in its oxidized state.
This is done using the atomic charges obtained from the
quantum geometry optimization of the oxidized (radical)
species. (Details of substrate parametrization are provided in
the SI.) In such a way, the enzyme−substrate interaction energy
represents the degree of stabilization of the oxidized substrate
by the protein environment. As shown in the last column of
Table 1, 3PO turned out to be clearly a more favorable host for
the oxidized species than PcL because the minimum substrate−
enzyme classical (force field) interaction energy is significantly
lower in the mutant (Table 1). Notably, these classical
simulations results (improved enzyme−radical stabilization in
3PO, Table 1) agree with the increase in substrate’s spin
density seen in the (slow/expensive) quantum-mechanics
simulations. Such scenario opens the door to implement fast
computational screening of mutants using PELE’s ligand
sampling, which requires ∼10 h × 8 CPUs per mutant, to
improve the enzyme−radical interaction energy through several
mutation cycles. Subsequent spin density calculations can be
used at the end of each cycle to rescore the most promising
mutants.
In conclusion, molecular simulations indicate that mutations

accumulated during directed evolution increase laccases
enzymatic activity by affecting substrate binding rather than
the metal redox potential. Extensive conformational sampling
revealed important changes in the protein−ligand energy
landscape upon mutation. Then, quantum-chemical calculations
confirmed an oxidation (substrate’s spin density) increase as a
result of an enhanced electrostatic stabilization of the radical
species. No significant change is detected in the T1 copper
redox potential. Therefore, the oxidation rate of a target
substrate can be improved by fine-tuning the binding event. In
the authors’ opinion, this is a viable way to the design of fit-for-
purpose laccases (extendable to other oxidative enzymes),
which might be undertaken with the assistance of computa-
tional methodologies like the one presented here.

■ METHODS
System Setup. The PcL structure (2XYB) is taken from the
Protein Data Bank and prepared with Protein Preparation
Wizard46 at pH 5 to compare with the experimental data. The
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protonation state of titratable residues is generated with
PROPKA47 and double-checked by visual inspection and
comparison with the outcome of the H++ server (http://
biophysics.cs.vt.edu/H++).48 Four acidic residues are, accord-
ing to both methods, protonated: 50, 440, 454, and 468. 3PO
mutations are introduced, and the new protein structure is
relaxed with PELE.
PELE Sampling. PELE is a Monte Carlo algorithm in which a

move consists of three steps: perturbation, relaxation, and
Metropolis acceptance criteria. First, the ligand is subjected to
random rotations and translations while the protein is
perturbed based on the anisotropic network model (ANM);49

all of the atoms are displaced by a minimization where the α-
carbons are forced to follow a linear combination of randomly
picked low eigenvector obtained in the ANM approach. This
perturbation stage is followed by discrete minimization50 of
those side chains with higher energy increase along the previous
ANM step. Finally, a truncated Newton minimization, using the
OPLS51 all-atom force field and an implicit surface-generalized
Born continuum solvent,52 is performed to obtain a new local
structure. Along the text, PELE’s binding energy refers to
protein−substrate interaction potential energies. After PELE’s
sampling, 20 structures within 5 kcal/mol of the lowest binding
energy pose are randomly selected for QM-MM analysis.
QM−MM Reactivity Scoring. Structures are relaxed with five

steps of geometry optimization using Qsite,53 and the spin
density of the substrate is evaluated using Mulliken partitioning
method.54 Substrate, T1 copper, and its first coordination
sphere are included in the quantum region, while the rest of the
protein is treated classically. The density functional method
with the M0655 functional and the lacvp*56,57 basis set is used
for the quantum region, while the OPLS-AA51 force field is
used for the classical part. A nonbonded cutoff of 50 Å is
applied. The partial geometry optimization is found to be
sufficient to let the spin density virtually converge, as clearly
visible in Figure S3 in the SI. Solvent effects are neglected to
speed up the calculations (saving both CPU time of a single
geometry optimization and sensibly reducing the number of
calculations because the effect of water MM charges would
need to be averaged on a much larger number of structures).
Although this choice leads to errors on an absolute ground, the
error is most likely comparable for all of the poses involving the
same ligand, making relative estimation still reliable (while
absolute values are not expected to be meaningful). Indeed, the
final aim of this methodology is to screen the activity of a big
number of mutants toward the same substrate. Solvent effects
can potentially be extrapolated and discussed, inspecting
changes in substrate’s SASA.23

Molecular Dynamics. System preparation (creation of
orthorhombic box with a minimum distance of 10 Å between
the protein surface and box’s wall, solvation with explicit waters,
neutralization, and addition of 0.15 M NaCl), equilibration
(Desmond’s default protocol), and the 5 ns NPT production
phase at 300 K are performed with Desmond.58 The OPLS-
2005 force field51 and the SPC explicit water model is used.
The temperature is regulated with the Nose−́Hoover chain
thermostat59 with a relaxation time of 1.0 ps, and the pressure is
controlled with the Martyna−Tobias−Klein barostat60 with
isotropic coupling and a relaxation time of 2.0 ps. The RESPA
integrator61 is employed with bonded, near, and far time steps
of 2.0, 2.0, and 6.0 fs, respectively. A 9 Å cutoff is used for
nonbonded interactions together with the smooth particle
mesh Ewald method.62

ΔΔG Calculation. The structures selected from each MD
trajectory are treated at the same level of theory used for the
reactivity scoring (see QM−MM Reactivity Scoring), with the
only difference being that an 8 Å layer of explicit water
molecules around the protein is kept and geometry
optimization is now complete. Although more waters would
be necessary to accurately estimate the absolute ΔG (to
guarantee an appropriate electrostatic description of the
system), the systematic error introduced here is the same for
wild-type and mutant protein. After QM−MM minimization,
an electron is added (removed) from the reduced (oxidized)
relaxed state and a single point calculation is performed at the
same level of theory. Vertical energies are calculated as the
difference between single point and geometry optimized
energies. Then, ΔΔG of reduction is estimated using the
LRA15,39 as

ΔΔ = Δ − Δ

− Δ − Δ

G V V

V V

1/2[( )

( ) ]

CU(II) CU(I) 3PO

CU(II) CU(I) PcL

where ΔVi is the vertical energy of the oxidation state i.
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