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Abstract Aryl-alcohol oxidase (AAO) is an extracellular
flavoprotein providing the H2O2 required by ligninolytic
peroxidases for fungal degradation of lignin, the key step
for carbon recycling in land ecosystems. O2 activation by
Pleurotus eryngii AAO takes place during the redox-cycling
of p-methoxylated benzylic metabolites secreted by the fun-
gus. Only Pleurotus AAO sequences were available for
years, but the number strongly increased recently due to
sequencing of different basidiomycete genomes, and a com-
parison of 112 GMC (glucose–methanol–choline oxidase)
superfamily sequences including 40 AAOs is presented. As
shown by kinetic isotope effects, alcohol oxidation by AAO
is produced by hydride transfer to the flavin, and hydroxyl
proton transfer to a base. Moreover, site-directed mutagen-
esis studies showed that His502 activates the alcohol sub-
strate by proton abstraction, and this result was extended to
other GMC oxidoreductases where the nature of the base
was under discussion. However, in contrast with that pro-
posed for GMC oxidoreductases, the two transfers are not
stepwise but concerted. Alcohol docking at the buried AAO
active site resulted in only one catalytically relevant position
for concerted transfer, with the pro-R α-hydrogen at dis-
tance for hydride abstraction. The expected hydride-transfer
stereoselectivity was demonstrated, for the first time in a

GMC oxidoreductase, by using the (R) and (S) enantiomers
of α-deuterated p-methoxybenzyl alcohol. Other largely
unexplained aspects of AAO catalysis (such as the unex-
pected specificity on substituted aldehydes) can also be
explained in the light of the recent results. Finally, the
biotechnological interest of AAO in flavor production is
extended by its potential in production of chiral compounds
taking advantage from the above-described stereoselectivity.
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Importance of lignin in natural recycling and industrial
use of plant biomass

Lignin is an essential constituent of the cell wall of vascular
plants and the second most abundant biopolymer in earth
(after cellulose) representing around 20% of the total carbon
fixed by photosynthesis in land ecosystems. The main role
of lignin is to protect the cell-wall polysaccharides cellulose,
and hemicelluloses (the latter being formed by different
pentosans and hexosans) against hydrolytic attack by sapro-
phytic and pathogenic microorganisms. Additionally, it pro-
vides to plant stems the rigidity required for growth on land
and waterproofs vascular tissues for sap circulation. The
recalcitrance of lignin against biodegradation is due to its
bulky and aromatic nature that limits the accessibility of
microbial enzymes and decreases its biodegradability. Lig-
nin is formed from three main p-hydroxycinnamyl alcohols
and their acylated forms, collectively known as monolignols
(Martínez et al. 2008; Ralph et al. 2004). Although the
lignin building blocks are phenolic compounds, the result-
ing polymer is non-phenolic. During lignin biosynthesis,
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monolignols are oxidized to their phenoxy radicals by plant
peroxidases (Higuchi 1997). Due to the prevalence of cer-
tain radical resonant forms, and the different stability of the
coupling products, ether linkages between the phenolic po-
sition and the side-chain β-carbon of the p-hydroxyphenyl-
propenoid precursors are strongly predominant in the
growing polymer, resulting in its non-phenolic nature.

Microbial degradation of lignin represents a key step
for carbon recycling in land ecosystems since removal
of the lignin barrier enables the subsequent use of plant
carbohydrates by microorganisms (Kersten and Cullen
2007; Martínez et al. 2005). Lignin removal is also a
central process for the industrial utilization of plant
biomass as a source of renewable chemicals, materials,
and fuels for sustainable development in future ligno-
cellulose biorefineries (Himmel et al. 2007; Ragauskas
et al. 2006). The growing demand for fossil fuels has
increased the interest on alternative, environmentally
friendly, and renewable energy sources. In this context,
renewable biomass sources are generally viewed as im-
portant contributors to the development of a sustainable
industrial society and the reduction of net greenhouse
gas emissions from petrochemical sources. For bioetha-
nol production from lignocellulosic biomass, the lignin
barrier limits the accessibility to fermentable sugars
(derived from cellulose and hemicelluloses). Disruption
of this barrier can be achieved through traditional meth-
ods, including high-temperature and strong chemical
reagents, or by sustainable and environmentally friendly
bio-pretreatment (Salvachúa et al. 2011). In the future,
biorefinery processes will extract first high-value chem-
icals present in the biomass, such as fragrances, flavor-
ing agents , food- re la ted products , h igh-va lue
nutraceuticals, and other fine chemicals. Later, plant
polysaccharides and lignin will be processed into feed-
stocks for bio-derivate materials, bulk chemicals, and
fuels (Ragauskas et al. 2006).

Overcoming the lignin barrier: two different strategies
based on H2O2

Wood-rotting basidiomycetes are the most efficient
degraders of lignocellulose. Based on macroscopic and
chemical degradation patterns, they are classified as white-
rot or brown-rot fungi (Martínez et al. 2005; Schwarze et al.
2000; Zabel and Morrell 1992). White-rot fungi are able to
degrade lignin and hemicelluloses. According to their ability
to degrade lignin selectively or simultaneously with cellu-
lose, two white-rot patterns have been described, the former
having the highest interest for delignification biotechnolog-
ical applications (Otjen and Blanchette 1986). A different
group of basidiomycetes called brown-rot fungi can degrade

wood polysaccharides after only partial modification of
lignin, resulting in a brown material consisting of modified
lignin (Martínez et al. 2011; Yelle et al. 2011).

Two of the most extensively investigated white-rot fungi,
Phanerochaete chrysosporium and Pleurotus eryngii,
evolved different extracellular enzymatic machineries to
degrade lignin. P. chrysosporium secretes peroxidases,
called lignin peroxidase (EC 1.11.1.14) and manganese
peroxidase (EC 1.11.1.13) (Hammel and Cullen 2008), and
the copper-radical glyoxal oxidase (EC 1.1.3.-) (Kersten
1990), while P. eryngii produces manganese peroxidase,
and versatile peroxidase (EC 1.11.1.16) instead of lignin
peroxidase (Ruiz-Dueñas et al. 2009), together with laccase
(EC 1.10.3.2) (Muñoz et al. 1997) and aryl-alcohol oxidase
(AAO, EC 1.1.3.7) (Guillén et al. 1990). White-rot fungi
also secrete different aryl metabolites involved in lignin
degradation (de Jong et al. 1994b; Gutiérrez et al. 1994).
The above enzymes cannot penetrate the compact cell-wall
structure in sound wood due to their molecular size; there-
fore, small chemical oxidizers—including activated oxygen
species, metal cations, and aromatic radicals—are probably
involved in the initial steps of fungal decay of wood (Evans
et al. 1994). The mechanism of lignocellulose degradation
by brown-rot fungi is still poorly understood. These fungi
are able to access and degrade wood polysaccharides with-
out removing the lignin. It is believed that they generate
extracellular Fe2+ and H2O2, which are small enough to
attack the wood cell wall by Fenton reaction (Fe2+ + H2O2

→ Fe3+ + H2O+OH•) generating hydroxyl free radical
(OH•) that oxidatively cleaves cellulose and hemicelluloses.
Brown-rot basidiomycetes produce extracellular hydroqui-
nones (Hammel et al. 2002) that reduce Fe3+ and O2 to drive
Fenton chemistry (Kerem et al. 1999). Comparison of the
transcriptomes and secretomes of the model fungi P. chrys-
osporium (white-rot) and Postia placenta (brown-rot)
reflects the above differences in lignocellulose degradation
(Martínez et al. 2009; Vanden Wymelenberg et al. 2009).
Comparison of these genomes (Table 1) indicates that
brown-rot fungi evolution concentrated or lost gene families
that are important in typical white-rot fungi, such as copper-
radical oxidases from one side and LiPs, MnPs, and pyra-
nose oxidase (EC 1.1.3.10) from the other. Additionally, the
origin of the H2O2 involved in oxidative degradation of
lignin and cellulose differs in white-rot and brown-rot basi-
diomycetes. In the former fungi, H2O2, for extracellular
peroxidases, is generated by secreted oxidases in which
flavin or copper act as cofactors for P. eryngii AAO and P.
chrysosporium glyoxal oxidase, respectively (Guillén et al.
1992; Kersten 1990). In brown-rot decay of wood, methanol
from lignin attack (demethoxylation) is proposed to serve as
substrate for methanol oxidase (EC 1.1.3.13) to provide the
H2O2 for hydroxyl radical generation in Fenton reaction
(Daniel et al. 2007; Martínez et al. 2009).
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AAO and other H2O2-producing enzymes involved
in lignin degradation

H2O2 plays a central role in wood attack by white-rot fungi
as the oxidizing substrate of ligninolytic peroxidases (Ruiz-
Dueñas and Martínez 2009). Moreover, it was postulated,
first in P. chrysosporium (Faison and Kirk 1983; Forney et
al. 1982) and later in P. eryngii (Gómez-Toribio et al. 2009;
Guillén et al. 2000), that H2O2 in white-rot decay could also
act as the precursor of highly reactive OH• being able to
depolymerize lignin (and polysaccharides). It was early
demonstrated that H2O2 is formed simultaneously with the
ligninolytic system and, when it is destroyed by catalase
addition to the fungal culture, the lignin-degrading capacity
is reduced (Faison and Kirk 1983). Several extracellular
enzymes have been postulated to be involved in the extracel-
lular production of H2O2 in white-rot fungi including, among
others, the above-mentioned glyoxal oxidase (Kersten and
Kirk 1987) and AAO (Guillén et al. 1990), and pyranose
oxidase (Daniel et al. 1994). H2O2 generated by intracellular
enzymes—e.g., glucose oxidase (EC 1.1.3.4) (Eriksson et al.
1986) or fatty-acyl-CoA oxidase (EC 1.3.3.6) (Greene and
Gould 1984)—requires an exportation system that has not
been reported to date. Interestingly, it has been shown that
methanol (alcohol) oxidase (EC 1.1.1.1), also reported in
white-rot fungi (Nishida and Eriksson 1987), is secreted by
the brown-rot fungus Gloeophyllum trabeum although its
sequence does not include a typical signal peptide (Daniel et
al. 2007). Another intracellular enzyme, the bicupin oxalate
oxidase (EC 1.2.3.4), has been reported as responsible for the
initial supply of H2O2 in the selective lignin degrader Ceri-
poriopsis subvermispora (Aguilar et al. 1999).

In P. chrysosporium, both glyoxal oxidase (Kersten and
Kirk 1987) and pyranose oxidase (Daniel et al. 1994) have
been reported under ligninolytic conditions. For glyoxal

oxidase, a temporal relationship between activity, production
of glyoxal/methylglyoxal, and lignin peroxidase was found,
supporting its involvement in lignin degradation as a source of
H2O2. In a similar way, pyranose oxidase shows a (hyphal and
periplasmic space) distribution similar to those reported for the
H2O2-dependent ligninolytic peroxidases in P. chrysosporium
(Daniel et al. 1994). AAO activity was found in different fungi,
including Pleurotus species (Bourbonnais and Paice 1988;
Guillén et al. 1992; Sannia et al. 1991), Trametes versicolor
(Farmer et al. 1960), Fusarium solani (Iwahara et al. 1980),
Rigidoporus microporus (syn. Fomes lignosus) (Waldner et al.
1988), Bjerkandera adusta (Kimura et al. 1990; Romero et al.
2009, 2010), and Botrytis cinerea (Goetghebeur et al. 1993).
The simultaneous production of AAO and lignin peroxidase in
B. adusta (Muheim et al. 1990), and AAO and versatile
peroxidase in Pleurotus cultures (Camarero et al. 1996) sup-
ports AAO involvement in lignin degradation. AAO localiza-
tion was investigated during wheat straw degradation by P.
eryngii under solid-state fermentation conditions, resembling
those of natural degradation of lignocellulose by fungi
(Barrasa et al. 1998). The enzyme was found in the hyphal
sheath (formed by secreted polysaccharide) (Fig. 1), as
reported for lignin peroxidase and laccase in other basidiomy-
cetes (Gallagher et al. 1989; Green et al. 1992). In spite of its
initial location on the hyphal surface, AAO can penetrate
degraded cell walls of phloem and parenchyma, and also the
more lignified sclerenchymatic tissues, as shown by both
immuno-gold and immuno-fluorescence microscopy (Fig. 1).

AAO substrates in lignin degradation can include both
lignin-derived compounds and aromatic fungal metabolites.
The former would be phenolic aromatic aldehydes and acids
(Kirk and Farrell 1987; Shimada and Higuchi 1991) being
reduced to alcohol substrates by aryl-alcohol dehydrogenases
(EC 1.1.1.90) (Muheim et al. 1991) and aryl-aldehyde dehy-
drogenases (E.C.1.2.1.29) (Lundell et al. 1990), respectively.

Table 1 Differences in genes of
enzymes potentially involved in
lignin degradation in the white-
rot (P. chrysosporium) and
brown-rot (P. placenta) fungal
genomesa

aAdapted from Martínez et al.
(2009)

White-rot fungus Brown-rot fungus

Peroxide production:

Methanol (alcohol) oxidase 1 1

Aryl-alcohol oxidase 4 3

Glucose oxidase 1 5

Pyranose oxidase 1 0

Glyoxal oxidase and other copper-radical oxidases 7 3

Lignin modification:

Lignin peroxidase 10 0

Manganese peroxidase 5 0

Generic peroxidase 1 1

Laccase 0 3

Iron reduction:

Quinone reductase 4 1

Cellobiose dehydrogenase 1 0
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Non-phenolic aromatic metabolites would be preferred taking
into account the substrate specificity of Pleurotus AAO
(Ferreira et al. 2005; Guillén et al. 1992), but the Bjerkandera
AAO also efficiently oxidizes phenolic benzylic alcohols
(Romero et al. 2009). Studies by Guillén and Evans (1994)
and Guillén et al. (1994) using different aromatic (benzylic, p-
methoxybenzylic, veratrylic, and vanillylic) compounds have
demonstrated that P. eryngii AAO provides a continuous
supply of H2O2 by redox cycling the above compounds, in
collaboration with mycelium dehydrogenases. This was con-
cluded after observing an equilibrium between oxidative and
reductive reactions on benzylic alcohol, aldehydes, and acids
that maintain the continuous H2O2 production at expenses of
intracellular reducing power (Guillén et al. 1994). At least
three enzymatic activities are involved in this process: extra-
cellular AAO, which oxidizes aryl alcohols to aldehydes and
eventually to acids (Ferreira et al. 2010; Guillén et al. 1992),
and intracellular aryl-alcohol and aryl-aldehyde dehydro-
genases, reducing them back to the aldehydes and alcohols
(Gutiérrez et al. 1994). Interestingly, p-methoxybenzaldehyde
(p-anisaldehyde) is the main extracellular aromatic metabolite
in Pleurotus species (Gutiérrez et al. 1994) and its reduced
form, p-methoxybenzyl alcohol, is one of the best substrates
of AAO in these fungi (see Table 2) (Ferreira et al. 2005;
Guillén et al. 1992). Therefore, most probably its physiolog-
ical role is to maintain the redox cycle performed by aryl-
alcohol dehydrogenase and AAO to supply H2O2 (Guillén and
Evans 1994; Gutiérrez et al. 1994). The same function was
suggested for chlorinated aryl alcohols in AAO-producing
Bjerkandera species (de Jong et al. 1994a).

A simplified scheme for lignin degradation by white-rot
fungi, based on P. eryngii studies (Ruiz-Dueñas and Martínez
2009), is presented in Fig. 2. Ligninolytic peroxidases (versatile
peroxidase in this case) oxidize the lignin polymer, thereby
generating aromatic radicals that evolve in different non-

enzymatic reactions including Cα–Cβ (and C4–Cβ ether)
linkage breakdown. As described above, the aromatic alde-
hydes from the latter reaction or synthesized de novo by the
fungus are the substrates for H2O2 generation by AAO in redox
cycle reactions after their reduction by mycelium dehydro-
genases. Phenoxy radicals from C4–ether breakdown can also
repolymerize if they are not first reduced, and AAO contribu-
tion to this reaction has also been suggested (Marzullo et al.
1995).

AAO: a member of the GMC oxidoreductases
superfamily

AAO, a secreted monomeric enzyme, is a member of the
glucose–methanol–choline oxidase (GMC) oxidoreductase
superfamily, which is composed of a variety of prokaryotic
and eukaryotic enzymes containing FAD as cofactor. This
superfamily was created by Cavener (1992) including Dro-
sophila melanogaster glucose dehydrogenase (EC 1.1.5.2),
Aspergillus niger glucose oxidase, Hansenula polymorpha
methanol (alcohol) oxidase, and Escherichia coli choline
dehydrogenase (EC 1.1.99.1). Later, additional flavoenzyme
sequences have been reported containing the typical signa-
tures of GMC oxidoreductases. More recently, this number
has strongly increased in the course of numerous genome
sequencing projects (although many putative GMC open
reading frames encode unknown proteins). The conserved
sequences of all the GMC superfamily members (from N
terminus to C terminus) include (Kiess et al. 1998) (1) The
FAD-binding domain composed of four separate sub-
regions, containing the ADP-binding βαβ motif that is not
only characteristic for the GMC oxidoreductases but con-
served among many FAD-binding proteins (Wierenga et al.
1983), and the GMC pattern-2 (PROSITE PS00624)

A B

hy

cw
hy

Fig. 1 AAO immunolocalization during wheat-straw degradation by
P. eryngii. a Transmission electron microscopy localization of AAO by
immuno-gold labeling (black spheres, arrowheads) in fungal hypha
(hy) and partially degraded straw cell wall (cw). b Fluorescence

microscopy localization of AAO by immuno-fluorescence labeling
(green-yellow spots, arrowheads) in sclerenchymatic cell walls and
fungal hyphae (hy). Adapted from Barrasa et al. (1998) (bars represent
1 μm in a and 10 μm in b)
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suggested to be implicated in binding of the FAD adenine
moiety; (2) the GMC oxidoreductase pattern-1 (PROSITE
PS00623), involved in both stabilization of the FAD-
covering lid and formation of the FAD-attachment loop;
and (3) the C-terminal region, including the substrate-
binding domain and the catalytic region, the most variable
in both sequence and number of elements.

For many years, the only AAO sequences available were
those from P. eryngii and Pleurotus pulmonarius reported
by Varela et al. (1999, 2000a) showing ~33% amino acid
identity with A. niger glucose oxidase (Varela et al. 2000b).
With the recent interest on white-rot fungi in lignocellulose
biorefineries, an increasing number of basidiomycetes
genomes are being sequenced at the DOE Joint Genome
Institute (http://www.jgi.doe.gov) including around 50
sequences annotated as putative AAO. Those from the

genomes of Ceriporiopsis subvermispora, Dichomitus squa-
lens, Fomitiporia mediterranea, Fomitopsis pinicola,
Gloeophyllum trabeum, P. chrysosporium, P. ostreatus, P.
placenta, Punctularia strigosozonata, Stereum hirsutum,
and Trametes versicolor are included in the dendrogram
shown in Fig. 3, after manual curation by the authors,
together with the two Pleurotus AAO cited above, and the
B. adusta AAO (Romero et al. 2010). The dendrogram also
includes the sequences from all the other members of the
GMC superfamily currently available from basidiomycetes
(up to a total of 112 sequences from the above species, plus
Agaricus xanthodermus, Athelia rolfsii, Auricularia deli-
cata, Coniophora puteana, Dacryopinax sp., Grifola fron-
dosa, Irpex lacteus, Leucoagaricus meleagris, Lyophyllum
shimeji, Myriococcum thermophilum, Pycnoporus cinna-
barinus, Phlebiopsis gigantea, Schizophyllum commune,
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Fig. 2 Scheme for the
enzymatic degradation of lignin
by Pleurotus species. Versatile
peroxidase attacks cell-wall
lignin substructures
(L-containing circles represent
the remaining lignin polymer,
which is guaiacyl-type in the
scheme) with participation of
extracellular AAO generating
H2O2 during redox cycling of
aromatic aldehydes also
involving intracellular aryl-
alcohol dehydrogenase (the
stoichiometry of the reaction is
one molecule of NADPH
reduces one molecule of
p-anisaldehyde, that generates
one molecule of peroxide, and
finally oxidizes two lignin
subunits). See text for details.
Adapted from Ruiz-Dueñas et
al. (2009)
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Trametes ochracea, Trametes pubescens, Tricholoma mat-
sutake, and Wolfiporia coccos).

Five clusters corresponding to the different GMC types
found in basidiomycetes—namely AAO, cellobiose dehy-
drogenase (EC 1.1.99.18), methanol oxidase, pyranose de-
hydrogenase (EC 1.1.99.29), and pyranose oxidase—are
clearly delimited in the dendrogram. The AAO and metha-
nol oxidase clusters are the largest ones, while only a small
number of basidiomycete pyranose dehydrogenase sequen-
ces (from four different species) are available. Interestingly,

the above clusters were fully homogeneous in the sense that
each of them exclusively included sequences from one
GMC type, revealing phylogenetic distance and clear delim-
itation between the different enzyme types in this superfam-
ily. In the AAO cluster, a first subcluster including the
Pleurotus sequences from one side and the P. strigosozonata
sequences (together with one G. trabeum sequence) from
the other side is observed, together with a second large
subcluster including AAO sequences from a variety of ba-
sidiomycete species. In agreement with other phylogenetic
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Dicsq Dichomitus squalens
Fomme Fomitiporia mediterranea
Fompi Fomitopsis pinicola
Glotr Gloeophyllum trabeum
Grifr Grifola frondosa
Irpla Irpex lacteus
Leume Leucoagaricus meleagris
Lyosh Lyophyllum shimeji
Myrth Myriococcum thermophilum
Phach Phanerochaete chrysosporium
Pycci Pycnoporus cinnabarinus 
Phlgi Phlebiopsis gigantea 
Pleer Pleurotus eryngii 
Pleos Pleurotus ostreatus 
Plepu Pleurotus pulmonarius
Pospl Postia placenta
Punst Punctularia strigosozonata
Schco Schizophyllum commune 
Stehi Stereum hirsutum
Traoc Trametes ochracea
Trapu Trametes pubescens
Trave Trametes versicolor
Trima Tricholoma matsutake
Wolco Wolfiporia coccos

AAO

PDH

MOX

CDH

POX

Fig. 3 Comparison of 112
GMC oxidoreductases from
basidiomycetes (31 species)
including AAO (40 sequences),
pyranose dehydrogenase (PDH;
5), methanol oxidase (MOX;
37), cellobiose dehydrogenase
flavin domain (CDH; 18), and
pyranose oxidase (POX; 12)
sequences from GenBank
(http://www.ncbi.nlm.nih.gov/
genbank) and the already
released JGI (http://www.jgi.
doe.gov) genomes (of C.
subvermispora, D. squalens, F.
mediterranea, F. pinicola, G.
trabeum, P. chrysosporium, P.
ostreatus, P. placenta, P.
strigosozonata, S. hirsutum,
and T. versicolor). The
dendrogram was obtained with
MEGA5 (Tamura et al. 2011)
using Poisson distances and
UPGMA clustering (pairwise
deletion). Numbers on the
branches represent bootstrap
values after 1,000 replications
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analyses of GMC oxidoreductases (Kittl et al. 2008;
Zámocký et al. 2004), basidiomycete pyranose dehydro-
genases were the closest to the AAO cluster, and methanol
oxidases were the first joining the two above clusters fol-
lowed by cellobiose dehydrogenases (flavin domain), and
pyranose oxidases formed the more distant cluster. Three
well-known GMC types, namely glucose oxidases, choles-
terol oxidases (EC 1.1.3.6), and choline oxidases (EC
1.1.3.17), are not included in the present comparison since
they have been only rarely reported from basidiomycetes
(the two latter being predominantly reported from bacteria).

General aspects of AAO structure and function
compared to other GMC flavoproteins

The recently solved crystal structure (Fernández et al. 2009) of
the P. eryngii AAO expressed in E. coli (Ruiz-Dueñas et al.
2006) shows the highest similarity to the crystal structures of
choline oxidase from Arthrobacter globiformis (Quaye et al.
2008) and A. niger glucose oxidase (Hecht et al. 1993), the
first GMC oxidoreductase whose structure was solved. Low
structural similarities were found with other GMC oxidore-
ductases, as white-rot fungal pyranose oxidase (Bannwarth et
al. 2004) and flavin domain of cellobiose dehydrogenase
(Yoshida et al. 2001), and bacterial cholesterol oxidase (Lario
et al. 2003). Based on overall topology and function, two
different domains could be defined in the AAO structure:
FAD-binding domain and substrate-binding domain
(Fig. 4a). The FAD-binding domain is a novel variation of
glutathione–disulfide reductase (EC 1.8.1.7) fold (Dym and
Eisenberg 2001; Fernández et al. 2009). The FAD molecule
interacts non-covalently with the protein through a network of
hydrogen bonds involving the main chain NH and CO groups

of residues located at the N terminus. Additionally, the N-
terminal region structure, which primary sequence corre-
sponds to a conserved GMC signature, is adopting the βαβ
fold in which the most important residues involved in cofactor
stabilization are located. On the other hand, AAO crystal
structure revealed a funnel-shaped channel that connects the
solvent with the flavin cofactor, in contrast to that observed in
glucose oxidase (Hecht et al. 1993) and pyranose oxidase
(Bannwarth et al. 2004), where the active site of the mono-
meric form is solvent exposed. Substrate diffusion in AAO is
limited by three aromatic residues—Tyr92, Phe397, and
Phe501 (Fig. 4b)—that form a bottleneck limiting the free
access to the active-site cavity (Fernández et al. 2009). Using
the PELE software for prediction of ligand diffusion in pro-
teins (Borrelli et al. 2005), it was shown that these residues
establish interactions with the alcohol substrate during its
access to the buried AAO active site (Hernández-Ortega et
al. 2011a), where it adopts a final position with the α-carbon
near the FAD flavin ring and the side chains of His502 and
His546 (Fig. 4b).

Crystal structures of AAO, glucose oxidase (Wohlfahrt et
al. 1999), cholesterol oxidase (Lario et al. 2003), choline
oxidase (Quaye et al. 2008), and the flavin domain of
cellobiose dehydrogenase (Hallberg et al. 2002) share a
highly conserved catalytic site, suggesting a similar oxida-
tion mechanism (Fig. 5a, b, d–f). Hydroxynitrile lyase (EC
4.1.2.10), an enzyme with fully different activity, also shares
the general folding and flavin pocket architecture with AAO
(Fig. 5c) although the latter is not involved in catalysis
(Dreveny et al. 2009). The oxidation mechanism proposed
for GMC oxidoreductases is a hydride transfer to flavin
assisted by a catalytic base that activates the alcohol sub-
strate. The nature of the catalytic base that abstracts the
hydroxyl proton from the substrate has been largely

A B

H502
F501

FAD

H546

Y92

F397

Alcohol

Fig. 4 AAO molecular
structure. a Secondary structure
represented as ribbon diagram,
α-helixes in red and β-sheets in
yellow, with the FAD cofactor
represented as Corey–Pauling–
Koltun (CPK) colored sticks, as
shown in crystal structure (PDB
entry 3FIM). b Active-site
detail showing five residues
(Tyr92, Phe397, Phe501,
His502, and His546), the FAD
cofactor flavin ring, and p-
methoxybenzyl alcohol
substrate docked by PELE as
described by Hernández-Ortega
et al. (2011a) (CPK colors)
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discussed in these GMC oxidoreductases. As described in
more detail in the next section, two different residues were
investigated as catalytic bases in AAO: (1) His502, fully
conserved among GMC superfamily proteins; and (2) His546,
that is spatially conserved in AAO and glucose oxidase (as
well as in hydroxynitrile lyase) while it corresponds to an
asparagine residue in choline oxidase, cholesterol oxidase,
and cellobiose dehydrogenase (Fig. 5). Different site-
directed mutagenesis studies have shown that both residues
are involved in catalysis and/or substrate binding in AAO
(Ferreira et al. 2006; Hernández-Ortega et al. 2011a), glucose
oxidase (Witt et al. 2000), choline oxidase (Ghanem and
Gadda 2005; Rungsrisuriyachai and Gadda 2008), cellobiose
dehydrogenase (Rotsaert et al. 2003), and cholesterol oxidase
(Yue et al. 1999). The fully conserved histidine was proposed
as catalytic base in A. niger glucose oxidase (Wohlfahrt et al.
2004), cellobiose dehydrogenase (Rotsaert et al. 2003), and
pyranose oxidase (Wongnate et al. 2011). However, a choles-
terol oxidase crystal structure at atomic resolution showed that
the homologous histidine (His447) is protonated, suggesting a
different role (maybe acting as a hydrogen bond donor that
would assist during catalysis) (Lyubimov et al. 2006). Addi-
tionally, other studies challenged the nature of His466 as

catalytic base in choline oxidase (Ghanem and Gadda 2005).
The role of these conserved histidine residues in GMC catal-
ysis is discussed below based on AAO recent results.

Recent answers to some old questions on AAO catalysis

Recent studies on P. eryngii AAO structure–function rela-
tionships and catalytic properties (by a combination of ki-
netic, isotope labeling, crystallographic, directed
mutagenesis, chromatographic, spectroscopic, and compu-
tational techniques) have contributed to solve some ques-
tions on the catalytic mechanisms of AAO that remained
unsolved for years, such as (1) the final nature of the
catalytic base contributing to alcohol substrate oxidation
and (2) the apparently inverted substrate specificity of
AAO when oxidizing substituted aromatic aldehydes, with
respect to aromatic alcohols.

Nature and role of the postulated catalytic base in AAO
(and other GMC oxidoreductases) AAO crystal structure
(Fernández et al. 2009) suggested catalytic features in com-
mon with glucose oxidase. Two possible mechanisms for

A

H502

H546

F N732

H689

H447

N485

N510

E

H466

H516

B H559

C D

H459

H497

Fig. 5 Conserved active-site
residues among GMC
superfamily members: P.
eryngii AAO (a), A. niger
glucose oxidase (b), Prunus
amigdalus hydroxynitrile lyase
(c), Brevibacterium sterolicum
cholesterol oxidase (d), A.
globiformis choline oxidase (e),
and P. chrysosporium
cellobiose dehydrogenase (f).
From PDB entries 3FIM, 1CF3,
1JU2 1COY, 2JBV, and 1KDG,
respectively
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glucose oxidation by the enzyme have been suggested: (1)
direct hydride transfer from glucose C1 to flavin, aided by the
removal of the C1-hydroxyl proton by a basic group on the
enzyme (Bright and Appleby 1969); and (2) nucleophilic
addition by glucose C1 hydroxyl to flavin C4a, followed by
proton abstraction from C1 (Weibel and Bright 1971). Both
mechanisms are expected to be assisted by a general catalytic
base, with His516 or His559 acting as potential proton accept-
ors (Witt et al. 2000). However, the nucleophilic addition
mechanism seemed to be less probable, as the covalent inter-
mediate enzyme–glucose has never been detected (Leskovac
et al. 2005).

In a similar way, the AAO catalytic mechanism has been
discussed during recent years (Ferreira et al. 2005; 2009;

Guillén et al. 1992; Hernández-Ortega et al. 2011a; Varela et
al. 2000b). First, sequence alignment and homology model-
ing (using glucose oxidase crystal structure as template)
showed that AAO His502 and His546 correspond to glucose
oxidase His516 and His559, respectively (Fig. 5a, b), and
could be playing similar roles in both enzymes (Varela et al.
2000b). Later, the AAO mechanism for alcohol oxidation
(reductive half-reaction) was established by kinetic studies,
including substrate and solvent kinetic isotope effects (KIE),
and was defined as a hydride transfer from substrate Cα to
flavin N5 concerted with proton abstraction from α-
hydroxyl by a catalytic base (Ferreira et al. 2009). This
was confirmed by QM/MM studies that did not predict the
existence of a reaction intermediate, in agreement with the
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Fig. 6 Scheme for AAO catalytic cycle including two half-reactions.
In the reductive half-reaction (top), the alcohol substrate (here p-
methoxybenzyl alcohol) is two-electron oxidized by the flavin N5,
which simultaneously receives one of the alcohol α-hydrogens, in a
hydride transfer reaction concerted with proton transfer to His502
acting as a base (Hernández-Ortega et al. 2011a) that yields the alde-
hyde product and the reduced flavin. In the oxidative half-reaction

(bottom), the O2 substrate is two-electron reduced by the flavin (C4a)
with contributions of Phe501, which forces O2 to approach the flavin
C4a (Hernández-Ortega et al. 2011d), and His502 (the nature of the
catalytic acid has not been determined although this role is assigned
here to the protonated histidine) yielding hydrogen peroxide and the
reoxidized flavin. Adapted from Hernández-Ortega et al. (2011d)
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experimental results (Hernández-Ortega et al. 2011a). When
AAO was compared with choline oxidase, the QM/MM
energy profile for the latter enzyme was different, showing
a stable intermediate after proton abstraction, in agreement
with the two-step process mechanism reported and the lack
of solvent KIE during choline oxidation (Fan and Gadda
2005; Gadda 2003).

Simultaneously, directed-mutagenesis and computational
studies provided an unambiguous answer on the nature of
the catalytic base in AAO (Hernández-Ortega et al. 2011a).
His546 plays a role in alcohol binding, while His502 is the
catalytic base as revealed by the 3,000-fold and 1,800-fold
decreased kcat and kred in the H502A variant, respectively
(additionally, His502 participates in alcohol binding as shown
by the increased Km and Kd values in this variant). When the
nature of choline oxidase catalytic base was simultaneously
investigated by QM/MM, the results obtained pointed to
His466 as the base. The AAO His502 and choline oxidase
His466 are conserved among different GMC flavoenzymes
and occupy structurally homologous positions in front of the
flavin re-side, as shown by the crystal structures of both
enzymes (Fig. 5a and e, respectively). Although the studies
from Gadda and co-workers (Ghanem and Gadda 2005; Run-
gsrisuriyachai andGadda 2008) have not definitively conclud-
ed the nature of the choline oxidase catalytic base, they
showed that mutation of His466 caused the main effect on
kcat. Therefore, most probably the histidine residue conserved
in all GMC oxidoreductases (such as choline oxidase His466
and glucose oxidase His516) is the one acting as the catalytic
base in substrate oxidation, as shown by the authors for AAO
His502 (Hernández-Ortega et al. 2011a). A scheme of the
reductive half-reaction in AAO oxidation of aryl alcohols is
shown in Fig. 6 (top) including hydride abstraction by flavin
N5 and proton abstraction by His502 acting as the catalytic
base. Fig. 6 also shows (bottom) the second (oxidative) half-
reaction that closes the AAO catalytic cycle, where O2 is
reduced to H2O2 with contributions of Phe501, which forces
O2 to attain the catalytic C4a of flavin (Hernández-Ortega et
al. 2011d), and the same His502 involved in the previous half-
reaction, which also contributes to the H2O2 formation reac-
tion (Hernández-Ortega et al. 2008).

Inverse AAO specificity on substituted aromatic aldehydes
(with respect to alcohols) AAO substrate specificity has been
extensively studied for the P. eryngii enzyme (Ferreira et al.
2005; Guillén et al. 1992). The rates of oxidation of different
aromatic alcohol substrates by AAO are compared in Table 2,
as percentages of the activity observedwith benzyl alcohol.β-
Naphthylmethanol is the most readily oxidized substrate, in-
dicating that extension of the aromatic system favors the
action of the enzyme. The oxidation rates for benzylic alco-
hols are strongly affected by the nature, position, and number
of the aromatic-ring substituents. In general, electron donor

substituents (as methoxy groups) promote alcohol oxidation
by AAO, whereas electron-withdrawing substituents (as nitro
groups) produce the opposite effect, as expected.

As already reported by Guillén et al. (1992), AAO also
shows some activity on aromatic aldehydes, the highest activ-
ity (on 4-nitrobenzaldehyde) being ~5% the activity for benzyl
alcohol (Table 2). Surprisingly, electron-withdrawing sub-
stituents promoted aldehyde oxidation by AAO, while elec-
tron donors caused the opposite effect, in contrast to that
observed with alcohols. This suggested a reaction mechanism
different from that described for alcohol oxidation. However,
recent work by Ferreira et al. (2010) showed that the enzyme
activity on these aldehydes is in general terms correlated with
their hydration degree in water media (forming the
corresponding gem-diols) as estimated by 1H NMR. This fact,
together with the absence at the AAO active site of a residue
that could be responsible for aldehyde activation, as reported
in aldehyde dehydrogenase where a cysteine residue forms a
thiohemiacetal adduct with the substrate (Marchal and Bran-
lant 1999), suggest that water is the activating molecule in
aldehyde oxidation by AAO. Oxidation of aldehyde hydrated
forms has also been described for D. melanogaster alcohol
oxidase (Eisses 1989) and bacterial choline oxidase (Fan et al.
2006).

The reactions shown in Fig. 7b are suggested for AAO
oxidation of aromatic aldehydes: first the aldehyde would be
hydrated to the gem-diol form, and then the gem-diol would
be oxidized by AAO by a mechanism analogous to that
described for alcohol oxidation (Fig. 7a). Site-directed mu-
tagenesis and KIE studies in p-nitrobenzaldehyde oxidation
by AAO supported proton transfer to His502 (the same
active-site base activating simple alcohols) being concerted
with hydride transfer to the flavin (with similar solvent KIE
in both alcohol and aldehyde oxidations) (Ferreira et al.
2010). Therefore, we can conclude that the catalytic mech-
anism for AAO oxidation of aromatic aldehydes is similar to
that operating for the alcohol substrates, but it requires their
previous hydration to the gem-diol forms. The substrate
specificity differences observed (in terms of AAO activity
on aldehyde substrates bearing electron donor or withdraw-
ing substituents) are not related to the catalytic oxidation
reaction but to the previous hydration step that is favored by
the presence of electron-withdrawing substituents promot-
ing incorporation of the water hydroxyl to the aldehyde α-
carbon.

Biotechnological interest of AAO: flavor synthesis
and enzyme stereoselectivity

Customer demands for products with natural origin have
produced a new interest on the biotechnological production
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of natural flavors and aromas (Krings and Berger 1998).
White-rot fungi are among the most versatile potential aro-
ma producers (Fraatz and Zorn 2011; Lapadatescu et al.
2000). These fungi are able to produce two of the most
important aroma chemicals: vanillin and benzaldehyde. An-
other aromatic flavor, p-anisaldehyde, and its halogenated
derivatives, are also synthesized by Pleurotus and Bjerkan-
dera species being involved in H2O2 supply (Fig. 2) by the
concerted action of AAO and mycelium-associated aromatic
dehydrogenases (de Jong et al. 1994a; Guillén and Evans
1994; Gutiérrez et al. 1994).

Vanillin is mainly produced nowadays by chemical synthe-
sis from petrochemical precursors since its production from
alkaline depolymerization of lignosulfonates (Wünning 2001)
is decreasing due to environmental reasons (resulting in
worldwide use of kraft pulping) and natural vanillin from
Vanilla planifolia only provides a very small percentage of

the world consumption. However, environmentally friendly
alternatives are available (Priefert et al. 2001) including the
possibility to using white-rot organisms or their enzymes. As
illustrated in Fig. 2, vanillin is the first product from the
enzymatic (Cα–Cβ) breakdown of gymnosperm (guaiacyl-
type) lignin substructures by the synergistic action of lignin-
degrading (lignin peroxidase and versatile peroxidase) and
peroxide-producing (AAO and other oxidases) produced by
white-rot fungi (while angiosperm lignin would yield both
vanillin and syringaldehyde) (Kirk and Farrell 1987). Several
patents have been deposited on these biotransformations (e.g.,
Gross et al. 1993), although the processes are still to be
optimized. Additionally, ferulic acid and specially eugenol,
as a lower cost compound, have been suggested as vanillin
precursors of renewable origin among others (Priefert et al.
2001). Two different strategies, using modified organisms or
enzymes, have been recently proposed to improve the

Table 2 AAO activities on dif-
ferent aryl alcohols (left) and the
corresponding aldehydes (right)
relative to benzyl alcohola

nd not detected
aFrom Guillén et al. (1992) (es-
timated as O2 consumption)

Benzyl alcohol 100 Benzaldehyde 0.86

3-Methoxybenzyl alcohol 100 3-Methoxybenzaldehyde 0.85

4-Methoxybenzyl alcohol 571 4-Methoxybenzaldehyde 0.03

2,4-Dimethoxybenzyl alcohol 178 2,4-Dimethoxybenzaldehyde nd

Veratryl alcohol 326 Veratraldehyde 0.01

4-Hydroxybenzyl <5 4-Hydroxybenzaldehyde nd

4-Hydroxy-3-methoxybenzyl alcohol <5 4-Hydroxy-3-methoxybenzaldehyde nd

4-Nitrobenzyl alcohol 9 4-Nitrobenzaldehyde 4.77

β-Naphthylmethanol 746 β-Naphthaldehyde nd

Cinnamyl alcohol 451 Cinnamaldehyde 0.38

4-Methoxycinnamyl alcohol <5 4-Methoxycinnamaldehyde 0.01
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Fig. 7 Scheme for reactions catalyzed by AAO. AAO typically oxi-
dizes aromatic alcohols to the corresponding aldehydes (a) but, addi-
tionally, it can oxidize aromatic aldehydes to their corresponding acids
(b). The second reaction occurs via the gem-diols formed by aldehyde

hydration (Ferreira et al. 2010). After alcohol (or gem-diol) oxidation
by oxidized FAD, H2O2 is generated from O2 reduction (during FAD
regeneration) in both (a) and (b)
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biotechnological production of vanillin. The first strategy
involves the genetic modification of Rhodococcus strains
being able to initiate the eugenol transformation, by introduc-
ing genes of ferulic acid metabolism (Plaggenborg et al. 2006)
or the Pseudomonas fluorescens modification by inactivating
the genes involved in vanillin oxidation (Di Gioia et al. 2011).
The second strategy consisted on the usage of natural or
evolved variants of vanillyl-alcohol oxidase, an enzyme shar-
ing catalytic properties with AAO although belonging to a
different family, for creosol or vanillylamine oxidation, as
cheap vanillin precursors of petrochemical or renewable ori-
gin, respectively (van den Heuvel et al. 2001, 2004). Interest-
ingly, B. adusta AAO can oxidize vanillyl alcohol to vanillin
as efficiently as vanillyl-alcohol oxidase, although their activ-
ities on other substrates are different (Fraaije et al. 1995;
Romero et al. 2009). An additional advantage of vanillin from
some of the above processes is that it could be considered as a
“nearly natural” flavor, obtained from natural rawmaterials by
a biological (instead of chemical) natural process.

Additionally, fungal transformation of L-phenylalanine
leads to the above-mentioned benzaldehyde, together with a
wide spectrum of phenolic and non-phenolic aryl-metabolites
of industrial interest, as shown for the AAO-producing fungus
B. adusta (Lapadatescu et al. 2000). After trans-cinnamic acid
formation by L-phenylalanine ammonia-lyase, two metabolic
pathways for benzylic compound appear involving (1) α-
oxidation in which benzaldehyde and benzyl alcohol are the
major benzyl metabolites, and (2) β-oxidation leading to
benzoic acid formation. Benzoic acid, benzaldehyde, and
benzyl alcohol can be later hydroxylated and methylated to
give different methoxybenzyl metabolites whose redox state is
affected by the AAO activity level. In the above L-phenylal-
anine transformations for flavor production, aryl alcohols are
often the main aromatic metabolites produced, as reported for
B. adusta (benzyl alcohol) (Lapadatescu et al. 2000) and P.
chrysosporium (veratryl alcohol) (Jensen et al. 1994) among
other fungi. Therefore, these microbial transformations could
be combined with AAO treatment to obtain benzaldehyde or
other aromatic aldehydes. As an alternative, the fungal growth
conditions can be manipulated to increase the aldehyde levels,
as described for B. adusta growing on L-phenylalanine in the
presence of lecithin that simultaneously promotes the AAO
and benzaldehyde production by the fungus (Lapadatescu et
al. 1999). Interestingly, the B. adusta AAO has activity on
(para) phenolic and non-phenolic benzyl alcohols (Romero et
al. 2009) and it can, therefore, be of interest in the production
of both phenolic (e.g., vanillin) and non-phenolic (e.g., benz-
aldehyde) aromatic aldehydes.

Enantioselective biotransformations, including the use of
oxidative enzymes, are being actively investigated for a vari-
ety of asymmetric reactions of high commercial interest (e.g.,
more than half of drug candidates have chiral centers) (Carey
et al. 2006; Matsuda et al. 2009). Chiral secondary alcohols

(including benzylic alcohols) are widely used as synthetic
intermediates, chiral auxiliaries, and analytical reagents. Very
recent studies using α-monodeuterated p-methoxybenzyl al-
cohol (R and S enantiomers) have shown that hydride abstrac-
tion from alcohol substrates by AAO (see the AAO oxidation
mechanism described above) is stereoselective (Hernández-
Ortega et al. 2011b, c). This result is in agreement with the
concerted hydride and proton transfer mechanism found in
AAO (Ferreira et al. 2009), in contrast with the stepwise
process reported for other GMC oxidoreductases (Gadda
2008; Sucharitakul et al. 2010), as well as with the position
of p-methoxybenzyl alcohol after docking at the active site of
the enzyme (Hernández-Ortega et al. 2011a). Asymmetric
redox reactions have been reported for other flavoenzymes,
such as stereoselective vanillyl-alcohol oxidase (van den Heu-
vel et al. 2000, 1998), but as far as we know this is the first
time that enantioselective alcohol oxidation is reported for a
member of the GMC oxidoreductase superfamily.

Interestingly, very recent studies (Hernández-Ortega et al.
2011b, c) have also shown that the AAO stereoselectivity in
hydride abstraction from primary (non-chiral) alcohol sub-
strates is maintained when secondary (chiral) aromatic alco-
hols are used, although the AAO activity on these substrates
is several orders of magnitude lower. AAO crystal structure
after molecular docking with p-methoxybenzyl alcohol
showed why AAO is unable to bind secondary alcohols
efficiently. The small space available at the bottom part of
the active site cavity is restricting large substituents at the
Cα position. Therefore, for better accommodating a second-
ary alcohol, the active site should be enlarged. In this way,
engineered AAO could be used in the future for deracem-
ization of secondary alcohols mixtures, enabling purifica-
tion of the enantiomer that is not oxidized by the enzyme.
Stereoselective galactose oxidase (Minasian et al. 2004) has
also been studied for chiral alcohol deracemization and,
after several rounds of directed evolution, an improved
variant was obtained (Escalettes and Turner 2008). AAO is
highly stereoselective on primary alcohols; therefore, its
eventual use for enzymatic deracemization would not re-
quire the introduction of stereoselectivity, as often intended
engineering other industrial biocatalysts, but to extend its
activity to secondary alcohols by rational design using site-
directed mutagenesis, without modifying stereoselectivity.
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