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Abstract
Laccases are multi-copper containing oxidases (EC 1.10.3.2), widely distributed in fungi, higher
plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-
electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer
process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations
including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of
great biotechnological impact due to their few requirements (they only require air, and they
produce water as the only by-product) and their broad substrate specificity, including direct
bioelectrocatalysis.

Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper
pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in
organic synthesis, as they can perform exquisite transformations ranging from the oxidation of
functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or
the catalysis of key steps in the synthesis of complex natural products. In this review, the application
of fungal laccases and their engineering by rational design and directed evolution for organic
synthesis purposes are discussed.

Laccases: general features
Distribution
Laccases (benzenediol:oxygen oxidoreductase, EC
1.10.3.2) belong to the multicopper oxidase family, along
with such different proteins as plant ascorbic oxidase,
mammalian ceruloplasmin or Fet3p ferroxidase from Sac-
charomyces cerevisiae, among others [1]. These copper-con-
taining enzymes catalyze the oxidation of various
substrates with the simultaneous reduction of molecular
oxygen to water [2]. Yoshida first discovered laccases in
1883 after observing that latex from the Japanese lacquer

tree (Rhus vernicifera) hardened in the presence of air
[3,4]. This makes laccase as one of the oldest enzymes ever
described. Since then, laccase activity has been found in
plants, some insects [5,6], and few bacteria [7]. However,
most biotechnologically useful laccases (i.e. those with
high redox potentials) are of fungi origin. Over 60 fungal
strains belonging to Ascomycetes, Deuteromycetes and
especially Basidiomycetes show laccase activities. Among
the latter group, white-rot fungi are the highest producers
of laccases but also litter-decomposing and ectomycor-
rhizal fungi secret laccases [8].
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Biochemical features
Laccases are typically monomeric extracellular enzymes
containing four copper atoms bound to 3 redox sites (T1,
T2 and T3). The termed "blue copper" at the T1 site-
because of its greenish-blue colour in its oxidized resting
state-is responsible of the oxidation of the reducing sub-
strate. The trinuclear cluster (containing one Cu T2 and
two Cu T3) is located approx. 12 Å away from the T1 site,
and it is the place where molecular oxygen is reduced to
water [1]. Laccases catalyze one-electron substrate oxida-
tion coupled to the four-electron reduction of O2. It is
assumed that laccases operate as a battery, storing elec-
trons from the four individual oxidation reactions of four
molecules of substrate, in order to reduce molecular oxy-
gen to two molecules of water.

Fungal laccases often occur as multiple isoenzymes
expressed under different cultivation conditions (e.g.
inducible or constitutive isoforms). Most are monomeric
proteins, although laccases formed by several units have
been also described [9,10]. They are glycoproteins with
average molecular mass of 60–70 kDa, and carbohydrate
contents of 10–20% which may contribute to the high sta-
bility of laccases. The covalently linked carbohydrate moi-
ety of the enzyme is typically formed by mannose, N-
acetylglucosamine and galactose. The amino acid chain
contains about 520–550 amino acids including a N-ter-
minal secretion peptide [4].

Biological functions and industrial applications
Biological functions attributed to laccases include spore
resistance and pigmentation [11,12], lignification of plant
cell walls [13], lignin biodegradation, humus turnover
and detoxification processes [8], virulence factors [12],
and copper and iron homeostasis [14].

Laccases exhibit an extraordinary natural substrate range
(phenols, polyphenols, anilines, aryl diamines, methoxy-
substituted phenols, hydroxyindols, benzenethiols, inor-
ganic/organic metal compounds and many others) which
is the major reason for their attractiveness for dozens of
biotechnological applications [15-17]. Moreover, in the
presence of small molecules, known as redox mediators,
laccases enhance their substrate specificity. Indeed, lac-
case oxidizes the mediator and the generated radical oxi-
dizes the substrate by mechanisms different from the
enzymatic one, enabling the oxidative transformation of
substrates with high redox potentials-otherwise not oxi-
dized by the enzyme-, Figure 1A. The industrial applica-
bility of laccase may therefore be extended by the use of a
laccase-mediator system (LMS). Thus, laccase and LMS
find potential application in delignification and biob-
leaching of pulp [18-21]; treatment of wastewater from
industrial plants [22,23]; enzymatic modification of fibers
and dye-bleaching in the textile and dye industries
[24,25]; enzymatic crosslinking of lignin-based materials
to produce medium density fiberboards [26]; detoxifica-
tion of pollutants and bioremediation [27-31]; detoxifica-

Expanded role of laccase oxidizing non-usual substrates by the action of redox mediators (A); and redox potentials of the oxi-dation reactions of ABTS and HBT by laccase (B)Figure 1
Expanded role of laccase oxidizing non-usual substrates by the action of redox mediators (A); and redox 
potentials of the oxidation reactions of ABTS and HBT by laccase (B).
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tion of lignocellulose hydrolysates for ethanol production
by yeast [32,33]; enzymatic removal of phenolic com-
pounds in beverages-wine and beer stabilization, fruit
juice processing [34-36]-; and construction of biosensors
and biofuel cells [37].

In organic synthesis, laccases have been employed for the
oxidation of functional groups [38-42], the coupling of
phenols and steroids [43-45], the construction of carbon-
nitrogen bonds [46] and in the synthesis of complex nat-
ural products [47] and more.

As mentioned above, many of these applications require
the use of redox mediators opening a big window for new
biotransformations of non-natural substrates towards
which laccase alone hardly shows activity. On the other
hand, in most of the cases large quantities of enzymes are
required, which makes the efficient expression of laccase
in heterologous systems an important issue. Moreover,
the protein engineering of fungal laccases with the aim of
improving several enzymatic features (such as activity
towards new substrates, stability under harsh operating
conditions -e.g. presence of organic cosolvents, extreme
pH values-, thermostability, and others) is a critical point
in the successful application of this remarkable biocata-
lyst. All these issues are addressed in the following lines,
paying special attention to their application in organic
synthesis.

Laccase-mediator system (LMS)
The combination of the laccase with low molecular
weight molecules such as 2,2'-azino-bis-(3-ethylbenzothi-
azoline-6-sulphonic acid) (ABTS) or 1-hydroxybenzotria-
zole (HBT) not only lead to higher rates and yields in the
transformation of laccase substrates but also add new oxi-
dative reactions to the laccase repertory towards substrates
in which the enzyme alone had no or only marginal activ-
ity, Figure 1A, B. Thus, LMS enlarges substrate range being
able to oxidize compounds with redox potential (E°)
higher than that of laccase (typically, laccase E° at the T1
site is in the range +475 to +790 mV but the LMS allows
to oxidize molecules with E° above +1100 mV) [48,49].
Besides, the mediator acts as a diffusible electron carrier
enabling the oxidation of high molecular weight biopoly-
mers such as lignin, cellulose or starch [1]. Hence, the
steric issues that hinder the direct interaction between
enzyme and polymer are overcome by the action of the
redox mediator.

LMS has resulted highly efficient in many biotechnologi-
cal and environmental applications as regards the numer-
ous research articles and invention patents published
[50,51]. Many artificial mediators have been widely stud-
ied, from ABTS the first described laccase mediator [52], to
the use of synthetic mediators of the type -NOH- (such as

HBT, violuric acid (VIO), N-hydroxyphtalimide (HPI)
and N-hydroxyacetanilide (NHA), the stable 2,2,6,6-
tetramethyl-1-piperidinyloxy free radical (TEMPO), or the
use of phenothiazines and other heterocycles (e.g. pro-
mazine or 1-nitroso-naphthol-3,6-disulfonic acid), Figure
2[18,38,53]. More recently, complexes of transition ele-
ments (polyoxometalates) have been also demonstrated
to mediate lignin degradation catalyzed by laccase
[54,55].

The choice of a proper mediator (over 100 redox media-
tors have been described [56]) represents a key considera-
tion for a given biotransformation. The use of different
mediators may yield different final products when using
the same precursors. This is basically due to the fact that
substrate oxidation in laccase-mediator reactions occurs
via different mechanisms. The mediator radicals preferen-
tially perform a specific oxidation reaction based on its
chemical structure and effective redox potential (or disso-
ciation bond energy) [43,38,53,57]. For example, ABTS
and HBT follow two different radical pathways: i) electron
transfer (ET) in the case of ABTS radicals (ABTS•+or
ABTS2+) and ii) hydrogen atom transfer (HAT) for nitroxyl
radicals (N-O•) of HBT, Figure 3. On the contrary, the sta-
ble radical TEMPO follows an ionic oxidation mechanism
[38,39], Figure 4.

Despite all the associated advantages of LMS, there are
two major drawbacks hindering the use of mediators: they
are expensive and they can generate toxic derivatives.
Moreover, in some cases, while oxidizing the mediator,
laccase is inactivated by the mediator radicals, or the latter
can be transformed into inactive compounds with no
more mediating capability (e.g. generation of benzotria-
zol from HBT by losing the hydroxyl group). Last trends
are focusing in the use of low-cost and eco-friendly alter-
native mediators; in this sense, several naturally occurring
mediators produced by fungi (phenol, aniline, 4-hydroxy-
benzoic acid and 4-hydroxybenzyl alcohol) have been
identified [49]. More recently, phenolic compounds
derived from lignin degradation (such as acetosyringone,
syringaldehyde, vanillin, acetovanillone, ferulic acid or p-
coumaric acid) have been demonstrated to be highly-effi-
cient laccase mediators of natural origin (even better than
the powerful artificial ones) for dye decolorization,
removal of polycyclic aromatic hydrocarbons, pulp
bleaching and pitch removal [58-61], Figure 2. These nat-
ural compounds can be obtained at low cost due to their
abundance in nature and also in industrial paper pulp
wastes, smoothing the progress to a more environmental-
friendly and sustainable white biotechnology processes.

Heterologous expression of fungal laccases
Biotechnological and environmental applications require
large amounts of enzymes. Laccases secreted from wild-
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type fungal organisms may not be suitable for commercial
purposes mainly because the low yields and undesirable
preparation procedures (such as presence of toxic induc-
ers) are not economically advantageous; however recent
advances in bioreactor design and culture conditions have
significantly increased the production yields [62].

Heterologous expression should be better suited for large-
scale production, because of the potential of expressing
different laccases in one selected optimised host. Laccases,
like other oxidative enzymes, are difficult to express in
non-fungal systems. The heterologous expression of active
laccases has been reported mainly in filamentous fungi
(Aspergillus oryzae, Aspergillus niger, Aspergillus sojae and
Trichoderma reseei) and yeasts (Saccharomyces cerevisiae,

Pichia pastoris, Pichia methalonica, Yarrowia lipolytica and
Kluyveromyces lactis), Table 1. There is one remarkable
exception of homologous expression, in which the basid-
iomycete fungus Pycnoporus cinabarinus was used as host to
overexpress the active laccase (up to 1.2 g l-1) [63]. Unfor-
tunately, the functional expression of fungal laccases in
bacteria (Escherichia coli) has not been yet accomplished
(perhaps due to the requirement of glycosylation, missing
chaperones, and different codon usage, among other
shortcomings).

Laccase engineering
Crystallographic structure determination is an essential
tool for structure-function relationships studies (i.e.
rational design). However, since the crystallization of the

Chemical structures of some representative artificial (ABTS, HBT, violuric acid -VIO-, TEMPO, promazine -PZ- and 1-nitroso-naphthol-3,6-disulfonic acid -NNDS-) and lignin-derived natural mediators (acetosyringone, syringaldehyde, vanillin, acetovanil-lone, p-coumaric acid, ferulic acid and sinapic acid)Figure 2
Chemical structures of some representative artificial (ABTS, HBT, violuric acid -VIO-, TEMPO, promazine -
PZ- and 1-nitroso-naphthol-3,6-disulfonic acid -NNDS-) and lignin-derived natural mediators (acetosyringone, 
syringaldehyde, vanillin, acetovanillone, p-coumaric acid, ferulic acid and sinapic acid).
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first (but inactive) laccase from Coprinus cinereus in 1998
by Ducros et al.[107], few crystal structures of active lac-
cases have been published: one from the ascomycete
Melanocarpus albomyces [108], two from basidomycetes
Trametes versicolor [109] and Rigidosporus lignosun [110]
and another from Bacillus subtilis [111]. Based on these
laccase structures, over the last decade several residues in
the neighbourhood of the catalytic copper ions have been
subjected to site-directed mutagenesis to determine the
parameters that define the catalytic activity and the E° of
fungal laccases [112,113]. One consequence of these com-
prehensive structure-function studies has been the gener-
ation of a collection of mutants with structural
perturbations at the T1 copper center.

To overcome many of the limitations of the rational
design, and in the absence of enough structural informa-
tion, directed molecular evolution represents a promising
alternative. This methodology recreates in the laboratory
the key events of natural evolution (mutation, recombina-
tion and selection) doing in such a manner those more
efficient enzymes-even with novel functions-can be tai-
lored. Diversity is mimicked by inducing mutations and/
or recombination in the gene encoding a specific protein.
Afterwards, the best performers in each generation are
selected and further used as the parental types for a new
round of evolution. The process is repeated as many times
as necessary enhancing exponentially the targeted fea-
tures, until a biocatalyst with the desired traits is obtained:
stability at high temperature or in organic solvents;
improved catalytic activities; higher specificity; etc.

A thorough understanding of efficient and reliable high-
throughput screening methodologies is a prerequisite for
the design and validation of this type of experiments
[114]. A key query result of smart laboratory evolution is
the improvement of several enzymatic properties at the
same time (e.g. stability and activity). The first successful
example of directed laccase evolution reported came from
Arnold group [68]. They carried out the functional expres-
sion of a thermophilic laccase in S. cerevisiae by directed
evolution: after ten rounds of laboratory evolution and
screening, the total enzymatic activity was improved 170-
fold along with better performances at high temperatures.

It is well known that most of the laccase catalysed trans-
formations for organic syntheses (from the oxidation of
steroid hormones to the enzymatic polymerisation
required for the synthesis of phenolic-based resins such as
poly-α-naphtol, poly-pyrogallol and poly-catechol
[1,115]., as well as conductive water-soluble polymers
[116]) must be carried out in the presence of organic sol-
vents. However, at high concentrations of organic co-sol-
vents laccases undergo unfolding, therefore losing their
catalytic activity. Recently, our group generated a ther-
mostable laccase-the genetic product of five rounds of
directed evolution expressed in S. cerevisiae [117,118]-that
tolerates high concentrations of co-solvents. This evolved
laccase mutant is capable of resisting a wide array of bio-
technologically relevant miscible co-solvents at concen-
trations as high as 50% (v/v). Indeed, in 40% (v/v)
ethanol or in 30% (v/v) acetonitrile the performance of
the laccase mutant was comparable to that of the parental

Diagram showing the differences between the oxidation mechanisms followed by ABTS radicals (Electron Transfer route, ET) and HBT radicals (Hydrogen Atom Transfer route, HAT) in LMS for oxidation of non-phenolic substrates (according to Galli and Gentili [52])Figure 3
Diagram showing the differences between the oxidation mechanisms followed by ABTS radicals (Electron 
Transfer route, ET) and HBT radicals (Hydrogen Atom Transfer route, HAT) in LMS for oxidation of non-phe-
nolic substrates (according to Galli and Gentili[52]).
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enzyme in aqueous solution, a capacity that has not been
acquired in nature. Intrinsic electrochemical laccase fea-
tures such as the redox potential at the T1 and T2/T3 sites
and the geometry and electronic structure of the catalytic
coppers varied slightly during the course of the in vitro
evolution. Indeed, some mutations at the protein surface
stabilized the evolved laccase by allowing additional elec-
trostatic and hydrogen-bonding to occur [117]. Addition-
ally, the protein folding in the post-translational
maturation steps seemed to be modified by mutations in
processing regions [119].

Besides methods that involve iterative steps of random
mutagenesis and/or DNA recombination, semi-rational
studies-which take advantage from both protein structure
and combinatorial libraries constructed by saturation
mutagenesis- are being employed successfully. This
approach involves the mutation of any single amino acid
codon to all the other codons that will generate the 20
naturally occurring amino acids coupled to screen for the
desire function. This technique is commonly employed to
improve the characteristics of enzymes at "hot-spot" resi-
dues already identified by conventional random muta-

genesis. In addition, it can be employed to simultaneously
mutate several codons (combinatorial saturation muta-
genesis), which will enable all possible combinations of
interesting residues to be evaluated in order to identify
their optimal interactions and synergies.

In a recent study [120] of the evolved Myceliophthora ther-
mophila laccase variant T2 (MtLT2) expressed in S. cerevi-
siae [68], we applied combinatorial saturation
mutagenesis to residues L513 (the axial non-coordinating
ligand supposedly essential for the E° at the T1 site) and
S510 (belonging to the tripeptide 509VSG511 that is com-
mon to the low-medium E° laccases). A mutant with 3-
fold higher turnover rates than the parent type, contained
one beneficial mutation (TCGS510GGGG) that could not be
achieved by conventional error-prone PCR techniques,
since it was dependent on the two consecutive nucleotide
changes. In a more exhaustive study [119], several regions
of the same variant were investigated by combinatorial
saturation mutagenesis. After exploring over 180,000
clones, the S510G mutant revealed a direct interaction
between the conserved 509VSG511 tripeptide located in the
neighbourhood of the T1 site and the C-terminal plug.

Mechanisms of the laccase-TEMPO oxidation of hydroxymethyl groups to aldehyde groups by TEMPO according to d'Acunzo et al. [43]Figure 4
Mechanisms of the laccase-TEMPO oxidation of hydroxymethyl groups to aldehyde groups by TEMPO accord-
ing to d'Acunzo et al. [43].
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Table 1: List of heterologously expressed laccases

Laccase Source Host Comments References

PO1 Coriolus hirsutus Saccharomyces cerevisiae Active laccase secreted in the 
medium.

Kojima et al. [64]

PO2 Active laccase secreted in the 
medium.

Kojima et al. [64]

PrL Phlebia radiata Trichoderma reesei Laccase secreted activity of 7.7 
nkat ml-1 (ABTS). The enzyme was 
purified and partially characterized.

Saloheimo and Niku-Paavola 
[65]

LCC1, LCC4 Rhizoctonia solani Aspergillus oryzae Laccase activity secreted in the 
medium. The enzyme was purified 
and partially characterized.

Wahleithner et al. [66]

LCC2 Active laccase secreted in the 
medium.

Wahleithner et al. [66]

LCC1 Trametes villosa Aspergillus oryzae Active laccase secreted in the 
medium. The enzyme was purified 
and partially characterized.

Yaver et al. [9]

MtL Myceliophtora thermophila Aspergillus oryzae Laccase secreted activity of 0.85 U 
ml-1 (SGZ). The enzyme was 
purified and partially characterized.

Berka et al. [67]

Saccharomyces cerevisiae Laccase secreted activity of 0.6 U l-
1 (ABTS). Total activity was 
enhanced 170-fold by directed 
evolution (18 mg l-1).

Bulter et al. [68]

LCC1 Trametes versicolor Pichia pastoris Active laccase secreted in the 
medium. Production yield was 
further optimised.

Jönsson et al. [69]; 
O'Callaghan et al. [70]; Hong 
et al. [71]

LCC1 Saccharomyces cerevisiae Undetectable laccase activity in the 
medium.

Cassland and Jönsson [72]

LCC2 Saccharomyces cerevisiae Active laccase secreted in the 
medium. Production of ethanol 
from raw materials (0.12 U l-1).

Cassland and Jönsson [72] 
Larsson et al. [73]

LCCI Pichia pastoris Active laccase secreted in the 
medium. The enzyme and a 
truncated version (LCCIa) were 
purified and partially characterized.

Gelo-Pujic et al. [74]

LCCIV Pichia pastoris Laccase secreted activity of 0.15 U 
ml-1 (ABTS). The enzyme was 
purified and partially characterized.

Brown et al. [75]

LCCI Zea mays L Laccase activity was found in the 
seed, and variability in the amount 
was seen. The highest level was 
0.55% TSP (respect to total soluble 
protein).

Hood et al. [76]

LCC1 Pichia methalonica 9.79 U ml-1 of laccase acivity in 
recombinant with the α-factor 
signal peptide.

Guo et al. [77]

LACIIIb Yarrowia lipolytica 2.5 mg l-1 (0.23 U ml-1) of active 
enzyme with limited excess of 
glycosylation.

Jolivalt et al. [78]

LCCα Saccharomyces cerevisiae 0.035 U l-1 of laccase activity 
produced by S. cerevisiae.

Necochea et al. [79]

LCC1, LCC2 Pichia pastoris Aspergillus niger 2.8 U l-1 of laccase activity 
produced by P. pastoris and up to 
2700 U l-1 by A. niger.

Bohlin et al. [80]

Gene IV Aspergillus niger 592 U l-1 of enzyme activity in 
solid-state fermentation produced 
by A. niger.

Téllez-Jurado et al. [81]
Page 7 of 17
(page number not for citation purposes)



Microbial Cell Factories 2008, 7:32 http://www.microbialcellfactories.com/content/7/1/32
LAC Schizophyllum commune Aspergillus sojae Laccase secreted activity of 774 U 
ml-1 (Gallic acid).

Hatamoto et al. [82]

LCC1 Coprinus cinereus Aspergillus oryzae Transformants secreted from 8.0 
to 135 mg of active laccase per 
liter. The enzyme was purified and 
partially characterized.

Yaver et al. [83]

LCC1 Coprinopsis cinerea Coprinopsis cinerea Maximal activity (3 U ml-1) reached 
with the gpdII promoter and 0. 1 
μM CuSO4 (homologous 
expression).

Kilaru et al. [84]

LtLACC2 Liriodendron tulipifera Tobacco cells Protoplasts retained laccase 
activity which could be measured 
once the protoplasts were lysed.

LaFayette et al. [85]

LAC1 Pycnoporus cinnabarinus Pichia pastoris Transformants secreted 8.0 mg l-1 

of hyperglycosylated active laccase.
Otterbein et al. [86]

LAC1 Aspergillus niger 70 mgl-1 of active laccase using the 
A. niger signal peptide which 
represent a 77-fold increased 
activity (7000 U ml-1) (ABTS). The 
enzyme was purified and partially 
characterized.

Record et al. [87]

LAC 1 Aspergillus oryzae 80 mgl-1 of active laccase. Sigoillot et al. [88]
LAC 1 Pycnoporus cinnabarinus Laccase secreted activity of 1200 

mg l-1 (homologous expression)
Alves et al. [63]

LAC 1 Yarrowia lipolytica 20 mg l-1 of active enzyme in 
bioreactor.

Madzak et al. [89]

LAC2 Loblolly pine (Pinus taeda) Saccharomyces cerevisiae Yeast cells accumulated the 
expected fusion protein in 
insoluble fractions without 
degradation of products, but no 
laccase activity was detected.

Sato et al. [90]

PPOA Marinomonas mediterranea Escherichia coli Production of recombinant 
protein, with the most of activity, 
located in the membrane fraction 
rather than in the soluble one.

Sanchez-Amat et al. [91]

LAC4 Pleurous sajor-caju Pichia pastoris Transformants produced 4.85 mg l-
1 of active laccase. The enzyme was 
purified and partially characterized.

Soden et al. [92]

PPO Solanum tuberosum L. Lycopersicon esculentum Active laccases secreted in the 
medium conferring resistance to 
pathogen Pseudomonas syringae pv 
tomato.

Li and Steffens [93]

LAC 1 Melanocarpus albomyces Trichoderma reesei 920 mg L l-1 of active laccase Kiiskinen et al. [94]
LAC 1 Saccharomyces cerevisiae 168 U l-1 of laccase activity 

produced (around 3 mg l-1)
Kiiskinen et al. [94]

LAC3 Trametes sp. strain C30 Saccharomyces cerevisiae 2 mg l-1 of rLAC3 produced in 
bioreactor.

Klonowska et al. [95]

POXA1b, POXC Pleurotus ostreatus Kluyveromyces lactis 
Saccharomyces cerevisiae

K. lactis was more effective host 
(1.1 of POXA1b and 1.4 mg l-1 of 
POXC laccase) than S. cerevisiae.

Piscitelli et al. [96]

3M7C mutant Saccharomyces cerevisiae ~30 mU OD600 l-1 after 6 days of 
incubation in shaken flask.

Festa et al. [97]

POXA3 Kluyveromyces lactis 80 U l-1 after 10 days of incubation. Faraco et al. [98]

Table 1: List of heterologously expressed laccases (Continued)
Page 8 of 17
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LCC1 Pycnoporus coccineus Aspergillus oryzae 
Saccahromyces cerevisiae

High copper concentrations are 
required for the production of 
active laccase.

Hoshida et al. [99]

LCC1 Coprinopsis cinerea Coprinopsis cinerea Maximal activity (3 U ml-1) reached 
with the gpdII promoter and 0. 1 
μM CuSO4

Kilaru et al. [84]

LCC Tametes trogii Pichia pastoris 17 mg l-1 of active enzyme, 
reaching up to 2520 U l-1 in fed-
batch culture.

Colao et al. [100]

LCC1 Kluyveromyces lactis 6.6 U l-1 of bioactive molecule 
produced by K. lactis.

Camattari et al. [101]

LACB Trametes sp. Pichia pastoris Overexpression (1.01 U/mg) of 
active laccase (32000 U ml-1).

Li et al. [102]

LACD Trametes sp 420 Pichia pastoris 8.3 × 104 U l-1+of active laccase. Hong et al. [103]

Ery3 Pleurotus eryngii Aspergillus niger Partially characterization of 
recombinant laccase.

Rodríguez et al. [104]

Pel3 Saccharomyces cerevisiae 139 mU ml-1 of laccase in alginate 
immobilized cells and 18°C.

Bleve et al. [105]

LCC Fome lignosus Pichia pastoris 3.7-fold expression improvement 
(up to 144 mg l-1) with EMS 
random mutagenesis.

Hu et al. [106]

Table 1: List of heterologously expressed laccases (Continued)

Applications of laccases in organic synthesis dase (HRP), which suffer from the common "suicide

Organic synthesis of chemicals suffers from several draw-
backs, including the high cost of chemicals, cumbersome
multi-step reactions and toxicity of reagents [2,17]. Lac-
cases might prove to be very useful in synthetic chemistry,
where they have been proposed to be applicable for pro-
duction of complex polymers and medical agents
[16,121]. Indeed, the application of laccase in organic
synthesis has arisen due to its broad substrate range, and
the conversion of substrates to unstable free (cation) rad-
icals that may undergo further non-enzymatic reactions
such as polymerization or hydration. The list of laccases
used for organic synthesis is presented in Table 2.

Laccases for enzymatic polymerization and polymer 
functionalization
Enzymatic polymerization using laccases has drawn con-
siderable attention recently since laccase or LMS are capa-
ble of generating straightforwardly polymers that are
impossible to produce through conventional chemical
synthesis [127].

For example, the polymerization ability of laccase has
been applied to catechol monomers for the production of
polycatechol [127]. Polycatechol is considered a valuable
redox polymer; among its applications are included chro-
matographic resins and the formation of thin films for
biosensors. Former methods for the production of poly-
catechol used soybean peroxidase or horseradish peroxi-

H2O2 inactivation". The main limitation of all heme-con-
taining peroxidases is their low operational stability,
mostly due to their rapid deactivation by H2O2-with half-
lifes in the order of minutes in the presence of 1 mM H2O2
[127,137].

Inert phenolic polymers, for example poly(1-napthol),
may also be produced by laccase-catalyzed reactions
[125,138-140]. These polymers have application in wood
composites, fiber bonding, laminates, foundry resins,
abrasives, friction and molding materials, coatings and
adhesives [125,141].

The enzymatic preparation of polymeric polyphenols by
the action of laccases has been investigated extensively in
the past decades as a viable and non-toxic alternative to
the usual formaldehyde-based chemical production of
these compounds [142-144]. Poly(2,6-dimethyl-1,4-oxy-
phenylene)-"poly(phenylene oxide)", PPO-, is widely
used as high-performance engineering plastic, since the
polymer has excellent chemical and physico-mechanical
properties. PPO was first prepared from 2,6-dimethylphe-
nol monomer using a copper/amine catalyst system. 2,6-
Dimethylphenol was also polymerized through HRP
catalysis to give a polymer consisting of exclusively 1,4-
oxyphenylene units [145]. On the other hand, a small
amount of Mannich-base and 3,5,3'5'-tetramethyl-4,4'-
diphenoquinone units are contained in the commercially
Page 9 of 17
(page number not for citation purposes)
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Table 2: List of laccases used for organic synthesis

Laccase source Application Reference

Coriolus hirsutus Synthesis of an indamine dye Baker et al. [122]
Synthesis of conducting polyaniline Karamyshev et al. [116]

Pycnoporus cinnabarinus Synthesis of 3-(3,4-dihydroxyphenyl)-propionic acid derivatives Mikolasch et al. [45]

Pycnoporus coccineus Polymerization to functional polymers Uyama and Kobayashi [123]

Pyricularia oryzae Oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols Setti et al. [124]

Trametes versicolor Synthesis of aromatic aldehydes Fritz-Langhals and Kunath [40]
Polymerization of 1-napthol Akta et al. [125]
Synthesis of substituted imidazoles and dimerization products Schäfer et al. [126]
Polymerization of catechol Akta and Tanyolaç [127]
Cross-linking of a protein Boumans et al. [128]
Synthesis of 3,4-dihydro-7,8-dihydroxy-2H-dibenzofuran-1-ones Hajdok et al. [129]

Trametes villosa Polymerization of bisphenol A Uchida et al. [130]

Trametes hirsuta Oligomerization of protein Mattinen et al. [131]

Trametes pubescens Oxidation of sugars derivatives Marzorati et al. [132]
Oxidation of natural glycosides Baratto et al. [133]
Synthesis of totarol Ncanana et al. [134]

Pyricularia oryzae Crosslinking of recombinant proteins Suderman et al. [135]

Agaricus bisporus Synthesis of 3,4-dihydro-7,8-dihydroxy-2H-dibenzofuran-1-ones Hajdok et al. [129]

Myceliophthora Synthesis of poly(catechin) Kurisawa et al. [136]

(A) PPO derivatives obtained from 4-hydroxybenzoic acid derivatives by laccase catalysis, and (B) "Artificial Urushi" pre-pared from new "urushiol analogues" by a laccase-catalyzed cross-linking reactionFigure 5
(A) PPO derivatives obtained from 4-hydroxybenzoic 
acid derivatives by laccase catalysis, and (B) "Artifi-
cial Urushi" prepared from new "urushiol analogues" 
by a laccase-catalyzed cross-linking reaction.
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(A) Products obtained by the oxidation of sugars using lac-case and TEMPO, and (B) enzymatic modification of the natu-ral glycoside asiaticosideFigure 6
(A) Products obtained by the oxidation of sugars 
using laccase and TEMPO, and (B) enzymatic modifi-
cation of the natural glycoside asiaticoside.
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available PPO. The polymerization also proceeded under
air in the presence of laccase derived from Pycnoporus coc-
cineus without the addition of H2O2 [123,146].

It has been also reported that laccase induced a new type
of oxidative polymerization of 4-hydroxybenzoic acid
derivatives, 3,5-dimethoxy-4-hydroxybenzoic acid
(syringic acid) and 3,5-dimethyl-4-hydroxybenzoic acid.
The polymerization involved elimination of CO2 and H2
from the monomer to give PPO derivatives with molecu-
lar weight up to 1.8 × 104 (Figure 5A) [145,147].

A novel system of enzymatic polymerization, i.e. a lac-
case-catalyzed cross-linking reaction of new "urushiol
analogues" for the preparation of "artificial urushi" poly-
meric films (Japanese traditional coating) has been dem-
onstrated (Figure 5B) [148-151]. Flavonoids have been
also polymerized by polyphenol oxidase and laccase. The
flavonoid-containing polymers showed good antioxidant
properties and enzyme inhibitory effect [152].

It has been reported that laccase induced radical polymer-
ization of acrylamide with or without mediator [146].
Laccase has been also used for the chemo-enzymatic syn-
thesis of lignin graft-copolymers [153]. Along these lines,
the potential of this enzyme for crosslinking and func-
tionalizing lignocellulose compounds is also reported
[154]. Laccases can be used in the enzymatic adhesion of

fibers in the manufacturing of lignocellulose-based com-
posite materials, such as fiber boards. In particular, laccase
has been proposed to activate the fiberbound lignin dur-
ing manufacturing of the composites, and boards with
good mechanical properties without toxic synthetic adhe-
sives have been obtained by using laccases [155,156].
Another possibility is to functionalize lignocellulosic fib-
ers by laccases in order to improve the chemical or physi-
cal properties of the fiber products. Preliminary results
have shown that laccases are able to graft various phenolic
acid derivatives onto kraft pulp fibers [157,158]. This abil-
ity could be used in the future to attach chemically versa-
tile compounds to the fiber surfaces, possibly resulting in
fiber materials with completely novel properties, such as
hydrophobicity or charge.

Finally, laccase-TEMPO mediated system has been also
used to catalyze the regioselective oxidation of the pri-
mary hydroxyl groups of sugar derivatives or even starch,
pullulan and cellulose allowing the polymer functionali-
zation [132,159]. The efficiency of this system was ini-
tially tested with mono- and disaccharides (i.e., phenyl β-
D-glucopyranoside), and the corresponding glucopyran-
osiduronates were isolated and characterized (Figure 6A).
Subsequently, this chemo-enzymatic approach has been
exploited to achieve the partial oxidation of a water solu-
ble cellulose sample. Also, the same approach has been
applied for the mild oxidation of the glycosylated
saponin, asiaticoside [160] (Figure 6B), and a series of
natural glycosides [133].

Oxidative transformation of organic compounds by 
laccase
Laccases have been used to synthesize products of phar-
maceutical importance. The first chemical that comes to
mind is actinocin, synthesized via a laccase-catalyzed reac-
tion from 4-methyl-3-hydroxyanthranilic acid as shown
in Figure 7A. This pharmaceutical product has proven
effective in the fight against cancer as it blocks transcrip-
tion of tumor cell DNA [161,162].

Other examples of the potential application of laccases for
organic syntheses include the oxidative coupling of
katarantine and vindoline to yield vinblastine. Vinblast-
ine is an important anti-cancer drug, especially useful in
the treatment of leukemia. Vinblastine is a natural prod-
uct that may be extracted from the plant Catharanthus
roseus. The compound is however only produced in small
quantity in the plant, whereas the precursors-namely
katarantine and vindoline- are at much higher concentra-
tions, and thus are relatively inexpensive to obtain and
purify. A method of synthesis has been developed through
the use of laccase with preliminary results reaching 40%
conversion of the precursors to vinblastine [2]. Laccase
coupling has also resulted in the production of several

(A) Synthesis of actinocin via a laccase-catalyzed reaction, (B) Synthesis of novel cyclosporin reaction product obtained from cyclosporin A by HBT-mediated laccase oxidation, (C) Products obtained by the laccase/hydroquinone-mediated oxidation of (+)-catechin.Figure 7
(A) Synthesis of actinocin via a laccase-catalyzed reaction, (B) 
Synthesis of novel cyclosporin reaction product obtained 
from cyclosporin A by HBT-mediated laccase oxidation, (C) 
Products obtained by the laccase/hydroquinone-mediated 
oxidation of (+)-catechin.
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other novel compounds that exhibit beneficial properties,
e.g. antibiotic properties [163].

The study of new synthetic routes to aminoquinones is of
great interest because a number of antineoplast drugs in
use, like mitomycin, or under development, like nakijiq-
uinone-derivatives [164] or herbamycin-derivatives
[165], contain an aminoquinone moiety. Several simple
aminoquinones possess activity against a number of can-
cer cell-lines [166-168] as well as antiallergic or 5-lipoxy-
genase inhibiting activity [168,169].

Laccases have also been employed to synthesize new
cyclosporin derivatives [170]. Cyclosporin A was con-
verted to cyclosporin A Methyl vinyl ketone [R1 = (E)-2-
butenyl to R1 = (E)-3-oxo-1-butenyl] by HBT-mediated
laccase oxidation [170], (Figure 7B).

Laccases are also able to oxidize catechins. These mole-
cules are the condensed structural units of tannins, which
are considered important antioxidants found in herbs,
vegetables and teas. Catechins ability to scavenge free rad-
icals makes them important in preventing cancer, inflam-
matory and cardiovascular diseases. Oxidation of catechin

by laccase has yielded products (Figure 7C) with
enhanced antioxidant capability [136,171].

Last but not least, laccase finds applications in the synthe-
sis of hormone derivatives (generating dimers or oligom-
ers by the coupling of the reactive radical intermediates).
Intra et al. [172] and Nicotra et al. [44] have recently
exploited the laccase capabilities to isolate new dimeric
derivatives of the hormone β-estradiol (Figure 8A) and of
the phytoalexin resveratrol (Figure 8B), respectively. Sim-
ilarly, laccase oxidation of totarol, and of isoeugenol or
coniferyl alcohol gave novel dimeric derivatives [134] and
a mixture of dimeric and tetrameric derivatives [173]
respectively, whereas an even more complex mixture of
products was observed in the oxidation of substituted imi-
dazole (Figure 9A) [126]. These novel substituted imida-
zoles or oligomerization products (2–4) are applicable for
pharmacological purposes. In another study, derivatiza-
tion of the natural compound 3-(3,4-dihydroxyphenyl)-
propionic acid can be achieved by laccase-catalyzed N-

(A, ii-v) Dimeric products obtained by the oxidation of β-estradiol, (B) Dimeric product obtained by the oxidation of the phytoalexin resveratrolFigure 8
(A, ii-v) Dimeric products obtained by the oxidation 
of β-estradiol, (B) Dimeric product obtained by the 
oxidation of the phytoalexin resveratrol.
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coupling of aromatic and aliphatic amines (Figure 9B).
The derivatives of this antiviral natural compound 3-(3,4-
dihydroxyphenyl)-propionic acid may have interesting
pharmaceutical uses. More recently, nuclear amination of
p-hydroquinones with primary aromatic amines catalyzed
by laccases in the presence of O2resulted in the formation
of the corresponding monoaminated or diaminated qui-
nones [174,175], (Figure 9C).

Conclusion
The use of laccases in organic synthesis does show as a
promising green alternative to the classical chemical oxi-
dation with a wide range of substrates. In the near future,
the practical use of fungal laccases for troublesome trans-
formations (digestion of lignocellulose to use as a carbon
source; modifications of lignosulfonates for production of
emulsifiers, surfactants and adhesives; synthesis of poly-
mers with properties as redox films for bioelectronic
devices; synthesis of antibiotics and much more) will
expand the need for this biocatalyst. Meanwhile, the
development of more robust fungal laccases tailored by
protein engineering and the search for environment-
friendly mediators along with further research on heterol-
ogous expression are significant hurdles that must be
overcome.
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