Escherichia coli expression and in vitro activation of a unique ligninolytic peroxidase that has a catalytic tyrosine residue

Yuta Miki a, María Morales a, Francisco J. Ruiz-Dueñas a, María Jesús Martínez a, Hiroyuki Wariishi b, Angel T. Martínez a,*

a Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
b Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

ARTICLE INFO

Article history:
Received 20 May 2009 and in revised form 1 June 2009
Available online 6 June 2009

Keywords:
Lignin peroxidase
Trametes cervina
Heme protein
Escherichia coli expression
In vitro activation
Veratryl alcohol

ABSTRACT

Heterologous expression of Trametes cervina lignin peroxidase (LiP), the only basidiomycete peroxidase that has a catalytic tyrosine, was investigated. The mature LiP cDNA was cloned into the pET vector and used to transform Escherichia coli. Recombinant LiP protein accumulated in inclusion bodies as an inactive form. Refolding conditions for its in vitro activation—including incorporation of heme and structural Ca2+ ions, and formation of disulfide bridges—were optimized taking as a starting point those reported for other plant and fungal peroxidases. The absorption spectrum of the refolded enzyme was identical to that of wild LiP from T. cervina suggesting that it was properly folded. The enzyme was able to oxidize 1,4-dimethoxybenzene and ferrocytochrome c confirming its high redox potential and ability to oxidize large substrates. However, during oxidation of veratryl alcohol (VA), the physiological LiP substrate, an unexpected initial lag period was observed. Possible modification of the enzyme was investigated by incubating it with H2O2 and VA (for 30 min before dialysis). The pretreated enzyme showed normal kinetics traces for VA oxidation, without the initial lag previously observed. Steady-state kinetics of the pretreated LiP were almost the same as the recombinant enzyme before the pretreatment. Moreover, the catalytic constant (Kcat) for VA oxidation was comparable to that of wild LiP from T. cervina, although the Michaelis–Menten constant (Km) was 8-fold higher. The present heterologous expression system provides a valuable tool to investigate structure–function relationships, and autocatalytic activation of the unique T. cervina LiP.

© 2009 Elsevier Inc. All rights reserved.

Lignin in wood and other lignocellulosic materials is the most abundant renewable aromatic polymer, and one of the most recalcitrant biomaterial on the earth [1,2]. Lignin peroxidase (LiP; EC: 1.11.1.14), first described in the white-rot basidiomycete Phanerochaete chrysosporium [3–5], is an extracellular heme peroxidase involved in the oxidative depolymerization of lignin by white-rot fungi. Different aspects of LiP molecular structure provide to this enzymes the high redox potential and ability to oxidize bulky substrates, required for lignin biodegradation [6,7]. These unique properties of LiP have been shown by oxidation of 1,4-dimethoxybenzene [8] and ferrocytochrome c [9], as well as by its action on polymeric lignin and different model compounds [10,11]. 1,4-Dimethoxybenzene is hardly oxidized by other peroxidases because of its high redox potential (E1/2 1.34 V), and ferrocytochrome c is too large to penetrate into the heme cavity, as is also the case with the large lignin macromolecule. The catalytic properties of LiP and other ligninolytic enzymes are of interest for applications in paper pulp bleaching and bioethanol production from woody biomass [12].

Several kinetic, crystallographic and spectroscopic studies including chemical modification and site-directed mutagenesis of LiP from P. chrysosporium have demonstrated that a tryptophan residue located at the surface of the protein (Trp171) is the oxidation site for high redox-potential aromatic substrates [13–17] (Fig. 1A). This implies the existence of a long-range electron transfer (LRET) pathway from this exposed Trp171 to the heme cofactor in the peroxy activated enzyme. Studies of versatile peroxidases (VP) from Pleurotus eryngii and Pleurotus ostreatus, which possess catalytic properties of LiP including veratral alcohol (VA) oxidation, have shown that one of the VP substrates oxidation sites is also a tryptophan residue at the same location of P. chrysosporium LiP Trp171 [18–20]. In fact, the tryptophan residue corresponding to the above Trp171 is conserved in all genes encoding LiP and VP
proteins [21,22]. Thus, this residue is considered as essential for the LiP-type catalytic mechanism including the LRET pathway from high redox-potential substrates to heme.

Recently, a novel type of LiP has been found in the white-rot basidiomycete Trametes cervina. T. cervina LiP can oxidize 1,4-dimethoxybenzene and ferrocyanochrome c indicating that it possesses high redox potential and the ability to oxidize bulky substrates like other LiP and VP [23]. However, a tryptophan residue homologous to the catalytic tryptophan of LiP and VP is absent from the T. cervina LiP sequence [24]. By contrast, its sequence contains one tyrosine residue (Tyr181), while no tyrosines are present in the sequences of other LiP and VP [21]. It has been reported that tyrosine can act as a redox active residue, like tryptophan, in different enzymes [25] and a tyrosyl radical has been detected in a VP variant, whose catalytic tryptophan had been substituted by tyrosine [26].

The theoretical structure obtained by homology modeling of the T. cervina enzyme has shown that Tyr181 is exposed at the protein surface being a candidate substrate oxidation site (Fig. 1B), in agreement with results from chemical modification studies [27]. The catalytic mechanism of T. cervina LiP, most probably involving a Tyr181 radical, is quite interesting but it has not been investigated so far because of the very low yield of wild enzyme obtained from T. cervina cultures. Thus, developing an expression system to obtain recombinant LiP (LiP') of T. cervina was a requisite for further detailed mechanistic studies including site-directed mutagenesis of this unique peroxidase. In the present study, a heterologous system for T. cervina LiP’ expression in Escherichia coli was constructed. Since LiP’ protein was located in inclusion bodies, as other recombinant plant and fungal peroxidases expressed in E. coli [28–31], in vitro refolding was optimized for activation of T. cervina LiP’. Finally, the physicochemical and catalytic properties of the purified LiP’ were determined, and some interesting results were observed during VA oxidation.

Materials and methods

Materials

Dithiothreitol (DTT), lysozyme, oxidized glutathione (GSSG), hemin, 1,4-dimethoxybenzene, VA, and ferricytochrome c were purchased from Sigma–Aldrich. Isopropyl-β-D-thiogalactopyranoside (IPTC) was from Calbiochem, and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and DNase I were from Boehringer Mannheim. Restriction enzymes were from New England Biolabs.

All other chemicals were from Merck. E. coli expression vector pET23a(+) and BL21(DE3)pLysS strain were from Merck.

Amplification of cDNA encoding the mature T. cervina LiP

The mature LiP sequence was deduced from multiple alignment of the T. cervina LiP predicted amino-acid sequence (GenBank Accession No.: AB191466) with those of Pl. eryngii VPL2 (AF007224) and P. chrysosporium LiP18 (M27401) where the beginning of mature protein had been localized. Two oligonucleotides were synthesized corresponding to the N-terminal and C-terminal sequences of the mature T. cervina LiP: oligonucleotide lip-S (5’–CAT ATG GTG AGC TGC GTG GGC GGC CCG–3’) corresponded to the first seven residues preceded by a Ndel restriction site, and oligonucleotide lip-A (5′–GGGA TTC TTA CCC GAG AAC GGG GGC AAC–3’) was reverse and complementary to the last seven codons with a BamHI restriction site following the termination codon.

The mature LiP cDNA (mlip) was amplified by polymerase chain reaction (PCR) with Taq polymerase, using the cDNA of T. cervina LiP gene (AB191466) as template, and the lip-S and lip-A as primers. PCR temperature and time were programmed as follows: 94 °C for 2 min, followed by 94 °C for 60 s, 58 °C for 60 s, and 72 °C for 90 s in 30 cycles, with a final 5 min extension at 72 °C. PCR products were separated electrophoretically using 1% agarose gel, and stained with ethidium bromide. The DNA fragment corresponding to amplified mlip was excised from the gel and extracted using Geneclean kit (Funakoshi). Purified mlip was cloned into pGEM T-easy vector (Promega). Correct DNA sequence and reading frame were confirmed by sequencing using a BigDye terminator v3.1 equipment (Applied Biosystems).

Vector construction and mlip expression in E. coli

The mlip cDNA was excised with Ndel and BamHI from pGEM T-easy vector, and inserted under T7 promoter into the multi-cloning region of pET23a vector previously digested with the same enzymes. The resulting construct (named pET-mlip) was used to transform E. coli BL21(DE3)pLysS.

Escherichia coli cells harboring pET-mlip were grown in Terrific Broth containing ampicillin (100 μg/mL) and chloramphenicol (34 μg/mL) shaken (250 rpm) at 37 °C until an OD500 of 1.0 was attained. The cultures were induced by addition of 1.0 mM IPTG, and cultivated for another 4 h. Bacterial pellets harvested by centrifugation were stored at −20 °C until processed as described below.

Extraction and solubilization of the inclusion bodies

Fifteen grams of bacterial pellet (wet weight) were suspended in 200 mL of 50 mM Tris–HCl buffer (pH 8.0) containing 10 mM ethylenediaminetetraacetic acid (EDTA), 5 mM DTT, and 0.1 mg/mL DNase. Cells were disrupted by sonication, and subsequent centrifugation (30 min at 16,000g) allowed the collection of inclusion bodies containing the LiP’ polypeptide. Inclusion bodies were washed twice with 20 mM Tris–HCl buffer (pH 8.0) containing 1 mM EDTA and 1 mM DTT, and solubilized in the same buffer, containing 8 M urea, at room temperature. Protein concentration was determined by the Bradford method [32] using bovine serum albumin as standard, and then adjusted to 2 mg/mL using the same urea buffer. Finally the solution was sonicated for 1 min × 3 times at 20,000 Hz frequency.

Optimization of the in vitro refolding of T. cervina LiP’

The refolding mixture was prepared by 10-fold dilution of the above solution with refolding solution containing urea, CaCl₂,
Purified LiP was dialyzed against 20 mM sodium succinate buffer (pH 3.5) containing 0.2 mM substrate, and 0.1 mM H2O2. Reactions were initiated by adding 1 mM CaCl2 at different temperatures, and ABTS oxidation was assayed. For pH stability assay, 1 mM LiP was incubated for 30 min at room temperature, and catalytic constant (kcat) were obtained by nonlinear least-squares fitting to the experimental measurements using the Michaelis–Menten model equation: v = (kcat/Km)[S]/(1 + [S]/Km).

Large-scale refolding and LiP purification

The inclusion bodies were solubilized as described above, but the solubilization solution was 50 mM Tris–HCl buffer (pH 8.0) containing 2 mM EDTA and 2 mM DTT. Large-scale refolding of LiP was performed under the optimal conditions established in the small-scale experiments. Final concentrations in the refolding mixture were: 5 mM CaCl2, 0.6 mM GSSG, 0.1 mM DTT, 1 mM urea, 5 mM hemin, and 0.1 mM EDTA in 50 mM Tris–HCl (pH 9.5). After 18 h incubation at room temperature in the dark, the mixture was 50-fold concentrated using a 3 kDa cut-off ultrafiltration membrane. The concentrated sample was first dialyzed against 20 mM sodium acetate buffer (pH 4.2) containing 1 mM CaCl2, and then against 20 mM sodium acetate buffer (pH 4.5) containing 1 mM CaCl2. Insoluble material was eliminated by centrifugation at 16,000g for 30 min. The supernatant including active LiP was dialyzed against 10 mM sodium acetate buffer (pH 6.0) containing 1 mM CaCl2, LiP was purified in an anion-exchange chromatography column (Pharmacia Resource Q) using a 0–0.3 M NaCl gradient in the latter CaCl2–containing 10 mM sodium acetate buffer (pH 6.0). Purified LiP was dialyzed against 20 mM sodium succinate buffer (pH 4.5) containing 1 mM CaCl2, and stored at −80°C.

Physicochemical and catalytic properties of the refolded LiP

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) was performed in 12% polyacrylamide gel. Protein bands were visualized with Coomassie Blue R-250.

To investigate thermal stability, 1 μM LiP was incubated for 30 min in 20 mM sodium succinate buffer (pH 4.5) containing 1 mM CaCl2 at different temperatures, and ABTS oxidation was assayed. For pH stability assay, 1 μM LiP was incubated for 30 min at room temperature in 20 mM sodium succinate buffer (pH 2.5–6.0) or 10 mM Tris–HCl buffer (pH 7.0–9.0) containing 1 mM CaCl2, and ABTS oxidation activity was measured under the same conditions described above, using 20 mM succinate buffer (pH 3.5).

Oxidation of 1,4-dimethoxybenzene was investigated in 20 mM sodium succinate buffer (pH 3.5) containing 78 mM enzyme, 0.2 mM substrate, and 0.1 mM H2O2. Reactions were initiated by addition of H2O2. Spectral changes were monitored with a diode array UV–vis spectrophotometer (Hewlett–Packard 8453).

The oxidation of ferrocyanochrome c was assayed as previously described [9,23]. Ferrocyanochrome c was prepared by reducing ferriytochrome c with sodium dithionite. Excess sodium dithionite was removed using Sephadex G-25. The reaction mixture contained 78 mM enzyme, 12 mM substrate, and 0.1 mM H2O2 in 20 mM succinate buffer (pH 4.0).

VA steady-state kinetics and LiP pretreatment with VA and H2O2

VA oxidation rates were estimated from maximal absorbance increase at 310 nm for 5 s (veratraldehyde ε310 nm 9.3 mM−1 cm−1).
disulfide bonds [24]. In refolding, the formation of disulfide bonds is facilitated by controlling the ratio of oxidized-to-reduced glutathione (GSSG/GSH). As shown in Fig. 3C, the LiP* activity increased in a GSSG concentration-dependent manner up to 0.6 mM, and was stable over this concentration. When using 0.6 mM GSSG (the minimum amount required for the maximal activity) together with 0.1 mM DTT, the GSSG/GSH ratio was 5:2, which is similar to those used for other plant and fungal peroxidases [28–31].

The pH of the refolding mixture influences disulfide bond formation and peroxidase stability. Optimal pH was found to be pH 8.0 for HRP and *P. chrysosporium* MnP [28,29], and pH 9.5 for *P. chrysosporium* LiP and *Pl. eryngii* VP [30,31]. The optimum pH for refolding *T. cervina* LiP was determined to be pH 9.5 (Fig. 3D).

Finally, the optimal concentration of exogenous hemin was 5 μM (Fig. 3E), and the optimal incubation conditions were found to be 18–20 h at room temperature (Fig. 3F).

Purification of refolded LiP

Large-scale (2–4 L) refolding of LiP* was carried out under the conditions optimized above. After incubation, the refolding mixture including active LiP* was concentrated and dialyzed. The dialysis step allowed elimination of additives and precipitation of the misfolded protein, yielding a supernatant with 30-fold purification factor (Table 1). Then, LiP* was purified by single-step anion-exchange chromatography using a Resource Q column (Fig. 4). The purified LiP* gave a single band on SDS–PAGE (Fig. 4, inset). The final yield calculated from total activity was 23%, and the purification factor was 60-fold. Refolding efficiency based on final specific activity was approximately 2%; and the final yield of pure LiP* against initial amount of LiP* protein in the refolding mixture was approximately 0.6%, which is the same rate reported for recombinant LiP and MnP from *P. chrysosporium* [29,30].

The absorption spectrum of LiP* with peaks at 407, 501, and 637 nm was identical to that of the wild enzyme from *T. cervina* culture, suggesting that the protein folding, heme insertion, and iron coordination were correct. The molar extinction coefficient at 407 nm was determined to be 147 mM⁻¹ cm⁻¹, which is the same value of the wild enzyme.

LiP* stability and catalytic properties

Thermal and pH stabilities of *T. cervina* LiP* were investigated. The recombinant enzyme was fully stable up to 30 °C but unstable...
at 37 °C and, completely inactivated after 30 min at 60 °C (Fig. 5A). Concerning pH, the LiP* was stable from 3.5 to neutral pH, but unstable over pH 7.0 and below pH 3.0 (Fig. 5B). The above stability properties were similar to those found for the wild enzyme. The pH dependence on VA oxidation by LiP* was also investigated (Fig. 5C). The recombinant peroxidase showed the highest activity at the lowest pH (~2.5), as previously found for wild T. cervina LiP [23]. Acidic pH is considered to increase the oxidation power of heme, enabling LiP and VP to oxidize VA [33].

Conservation of the catalytic properties of the wild LiP from T. cervina, namely its high oxidative potential and ability to oxidize large substrates [23], was confirmed by the results obtained with 1,4-dimethoxybenzene and ferrocytochrome c. Fig. 6A shows the spectral changes during 1,4-dimethoxybenzene oxidation by the recombinant enzyme. The 1,4-dimethoxybenzene peak at 286 nm gradually decreased, and a new peak at 254 nm appeared, suggesting that LiP* oxidized 1,4-dimethoxybenzene to 1,4-benzoquinone. On the other hand, Fig. 6B shows ferrocytochrome c oxidation by T. cervina LiP*. The ferrocytochrome c spectrum with peaks at 550 and 520 nm was converted into a new spectrum with a peak at 528 nm, revealing the formation of ferricytochrome c. These results indicated that LiP* possesses catalytic properties similar to those of wild LiP from T. cervina.

VA oxidation by T. cervina LiP*

Fig. 7A shows the absorbance changes at 310 nm (corresponding to the characteristic veratraldehyde maximum) during VA oxidation by LiP*. The trace showed an unexpected initial lag (around 20 s) in veratraldehyde formation. The lag was also observed when distilled VA was used as substrate, indicating that it was not due to the presence of a VA minor contaminant yielding an oxidation product with a different absorbance maximum. Therefore, it was considered that the T. cervina LiP* could undergo an autoxidative modification at the beginning of the reaction, resulting in enzyme activation.

The above hypothesis was supported by the fact that pretreated LiP* (p-LiP*) prepared by pre-incubating the recombinant enzyme with VA and H2O2 followed by dialysis (see Materials and methods) did not show any lag in veratraldehyde formation (Fig. 7C). The absorption spectrum of p-LiP* was identical to that of LiP* (Fig. 7B and D) indicating that the self-activation reaction does not affect the heme environment, but could affect the catalytic Tyr181 or its environment.

Fig. 5. LiP* stability and pH dependence, estimated for VA oxidation. (A) Thermal stability showing residual activities after 30 min incubation at the given temperatures. (B) pH stability showing residual activities after 30 min incubation at 24 °C in different pH buffers. (C) pH dependence of VA oxidation by LiP*. Reaction mixtures contained 10 mM VA, 0.1 mM H2O2, and 40 nM LiP* in 20 mM sodium succinate buffer at given pH (reactions were initiated by addition of H2O2). Activities were estimated from maximum slope of absorbance changes at 310 nm, and relative values are shown.

Fig. 6. Spectrophotometric demonstration of LiP* oxidation of 1,4-dimethoxybenzene (A) and ferrocytochrome c (B). The first scan was recorded before addition of H2O2, and the subsequent scans were recorded every 10 min in (A) and every minute in (B) after H2O2 addition. Arrows indicate the sense of the spectral changes.

Fig. 7. Comparison of LiP* before and after pretreatment with VA and H2O2. Absorbance changes at 310 nm during VA oxidation by LiP* (A) showed an initial lag period in veratraldehyde formation that disappeared when the pretreated enzyme (p-LiP*) was used (C). The reaction mixture contained 10 mM VA, 0.1 mM H2O2, and 90 nM enzyme, in 20 mM sodium succinate buffer (pH 3.5). Absorption spectra of ~0.5 μM LiP* (B) and p-LiP* (D) in 20 mM sodium succinate buffer (pH 4.5), containing 1 mM CaCl2 are also shown.
Table 2
Steady-state kinetic parameters for VA oxidation by pristine LiP* and after its VA-H$_2$O$_2$ pretreatment (p-LiP*) compared with wild LiP from T. cervina culture.

<table>
<thead>
<tr>
<th></th>
<th>K_m (mM)</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>k_{cat}/K_m (mM$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiP*</td>
<td>2790</td>
<td>16.3</td>
<td>5.8</td>
</tr>
<tr>
<td>p-LiP*</td>
<td>3240</td>
<td>17.7</td>
<td>5.5</td>
</tr>
<tr>
<td>Wild T. cervina LiP*</td>
<td>369</td>
<td>19.3</td>
<td>52.3</td>
</tr>
</tbody>
</table>

Reactions were performed in 20 mM sodium succinate buffer (pH 3.0) containing 0.1 mM H$_2$O$_2$, and 50 nM enzyme.

Acknowledgments
This work was supported by the Spanish Projects BIO2007-65890-C02-01 and BIO2008-01533, and the BIORENEW project of the European Union (Contract NMP2-CT-2006-026456). Y.M. and F.J.R-D. acknowledge two EU project contracts, and M.M. acknowledges a FPI fellowship of the Spanish MICINN.

References

