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Enzymatic delignification of plant cell wall: from nature to mill
Ángel T Martı́nez1, Francisco J Ruiz-Dueñas1, Marı́a Jesús Martı́nez1,
José C del Rı́o2 and Ana Gutiérrez2
Lignin removal is a central issue in paper pulp manufacture, and

production of other renewable chemicals, materials, and

biofuels in future lignocellulose biorefineries. Biotechnology

can contribute to more efficient and environmentally sound

deconstruction of plant cell wall by providing tailor-made

biocatalysts based on the oxidative enzymes responsible for

lignin attack in Nature. With this purpose, the already-known

ligninolytic oxidoreductases are being improved using (rational

and random-based) protein engineering, and still unknown

enzymes will be identified by the application of the different

‘omics’ technologies. Enzymatic delignification will be soon at

the pulp mill (combined with pitch removal) and our

understanding of the reactions produced will increase by using

modern techniques for lignin analysis.
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Introduction
Central aspects of the enzymatic mechanisms of

microbial attack to lignin have been elucidated during

recent years [1�]. From their beginning, lignin biodegra-

dation studies have been related to the interest in bio-

technological applications for the paper pulp sector, the

main nonfood industrial use of plant biomass. The pro-

gress attained is especially remarkable when considering

that the synthesis and structure of lignin [2,3], a ‘black

box’ until its partial unraveling in the 1970s, is still under

investigation and some central issues remain controversial

[4�]. This review provides an overview of our current

knowledge on the main enzymes involved in lignin

degradation, their mechanisms of catalysis, the different

‘omics’ technologies to identify new enzymes, the use of

protein engineering to convert enzymes into industrial
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biocatalysis, and the combination of biology tools and

lignin analytical techniques for the implementation of

future biorefineries based on lignocellulosic crops.

The future lignocellulose biorefineries:
overcoming the lignin barrier
The lignocellulose biorefinery concept [5��,6] is receiving

considerable attention as a source of renewable chemi-

cals, materials, and fuels for future sustainable develop-

ment. Concerns on the growing price of crude oil, which

increased during the last two decades (peaking at near 150

US$/barrel in July 2008), relaunched the interest in the

development of cheap and widely available second-

generation biofuels [7,8]. The potential of lignocellulose

as a biofuel source was already considered during the first

oil crises in the 1970s, although the interest decreased

with the fall of oil prices. The exhaustion of crude

reserves will be accelerated by the incorporation of the

Asian emerging economies, and by the increasing amount

of chemicals and materials obtained from petrochemical

resources. This increased consumption of fossil fuels is

also the main source of the greenhouse gases that are

changing climate, causing a global warming of the bio-

sphere [9]. The lignocellulose biorefinery should signifi-

cantly contribute to reduce this global warming, owing to

the neutral balance between the carbon dioxide fixed by

plants and that released during the industrial utilization of

their biomass.

In the same way that petrol refineries separate oil frac-

tions to obtain different fuels and chemicals, the future

biorefineries to be economically feasible should overcome

the lignocellulose recalcitrance and separate its different

constituents (cellulose, lignin, hemicelluloses, and minor

constituents) to obtain different value added products

[5��]. Cellulose has a large market in paper manufacture,

and its future will also include the production of other

chemicals in addition to ethanol. Lignin, and to some

extent hemicelluloses, are considered as wastes by the

current lignocellulose industries, being burned for energy

supply. However, hemicelluloses could be a valuable

source of heteropolysaccharides and biofuels, and lignin

could be a source of aromatic chemicals and polymers

(both chemicals and biodiesel can also be obtained from

wood extractives) [10]. Nowadays, the only industrial

plants operating like ‘forest biorefineries’ are some pulp

mills that separate lignin from cellulose in such a way

that a variety of cellulose products are obtained, at the

same time that lignin is modified for different uses,

and bioethanol is obtained. We are convinced that this
www.sciencedirect.com
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concept will be adopted by an increasing number of paper

pulp and related companies in the future [11�] and that

the current technologies will be adapted to more flexible

processes to integrate production of both bulk and fine

chemicals and biofuels.

Green and white biotechnology can contribute to the

successful implementation of biorefineries by providing

more amenable raw materials and more efficient bioca-

talysts [12��]. Owing to the structure of the plant cell wall,

the presence of a lignin matrix where polysaccharides are

immersed (Figure 1) is the main obstacle in cell-wall
Figure 1

Schematic representation of plant secondary wall showing linear cellulose a

formed by dimethoxylated (syringyl), monomethoxylated (guaiacyl), and non

substructures containing ether and C–C interunit bonds. Cinnamic acids (CA

(some of them forming lignin–carbohydrate bridges). Reproduced from [81]
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deconstruction. For years, plant biologists dedicated their

efforts to clone the genes involved in biosynthesis of the

three monolignols giving rise to the different lignin units,

with the purpose of reducing their production or modify-

ing their balance for easier delignification [13�,14�].
Transgenic trees with improved pulping properties have

been obtained [15] but low lignin could also result in

altered growth, lower pest resistance, and other environ-

mental problems. Therefore, it has been suggested that

the benefits of these ‘super trees’ should be compared

with other alternatives such as improved biocatalysts for

biological delignification [16]. These biocatalysts could
nd branched hemicelluloses chains immersed in a lignin matrix

methoxylated ( p-hydroxyphenyl) phenylpropanoid units in a variety of

, p-coumaric acid; FA, ferulic acid; and SA, sinapic acid) are also shown

with the permission of the author and copyright owner.
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be based on the lignin degradation processes existing in

Nature, and should be applied both for taking out the

lignin from the cell wall releasing other constituents

(enzymatic deconstruction) and to modify the isolated

lignin yielding aromatic chemicals and other value added

products.

Lignin degradation in Nature: a
biotechnological model
Lignin removal is a key step for recycling the carbon fixed

by land photosynthesis. Some basidiomycetes (the so-

called ‘white-rot’ fungi because of the whitish color of

delignified wood) are the only efficient lignin degraders in

Nature [17]. The removal of lignin opens the way for

wood colonization by other microbial populations. Lignin

attack is an oxidative process, where the extracellular

hydrogen peroxide generated by unrelated fungal

oxidases, such as glyoxal oxidase, pyranose-2 oxidase,

and aryl-alcohol oxidase, oxidizes the polymer in a reac-

tion catalyzed by high redox-potential hemeperoxidases,

such as lignin peroxidase (LiP), manganese peroxidase

(MnP) and versatile peroxidase (VP) [17,18��,19�]. Early

reports describing the discovery [20] and cloning [21] of

LiP in Phanerochaete chrysosporium were true landmarks in

the field of enzymatic delignification (see [22] for

additional references). VP was described more recently
Figure 2

Two views of the solvent access surface of a ligninolytic peroxidase (Pleuro

access channel enabling hydrogen peroxide entrance for the activation of th

be oxidized at this channel albeit with low efficiency) and the Mn2+-oxidatio

binding the cation in front of the heme internal propionate; and a 1808-rotat

van der Waals spheres including hydrogen atoms) of the catalytic tryptopha

some phenols (high efficiency) by long-range electron transfer to the heme
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as a new peroxidase combining LiP and MnP catalytic

properties without some of their drawbacks [23]. Ligni-

nolytic peroxidase genes have been identified in more

than 150 agaricomycetes [24] although not all species

have the same gene types.

Ligninolytic peroxidases are tailor-made oxidoreductases

naturally designed to overcome the recalcitrance and

heterogeneity of the lignin polymer, formed by different

phenylpropanoid units in a three-dimensional network

including a variety of substructures [2]. Their high redox

potential, related to heme pocket architecture, enables

LiP and VP to directly oxidize the benzenic rings of lignin

irrespective of their methoxylation degree and interunit

linkages [1�]. The unstable aromatic cation radicals

formed, chemically evolve leading to depolymerization

and other reactions [17]. Peroxidases were forced to over-

come a second difficulty for lignin degradation. The heme

group activated by peroxide, which attains the cofactor

using an access channel (Figure 2, left), cannot oxidize

lignin since this bulky polymer is not able to reach the

heme pocket (in contrast with some simple phenols).

Therefore, these enzymes oxidize lignin at the protein

surface using an exposed tryptophanyl radical (exception-

ally a tyrosyl radical) formed by long-range electron

transfer to the activated cofactor [1�]. Figure 2 illustrates
tus eryngii VP; PDB entry 2BOQ) revealing (left) the main heme

e heme cofactor (in yellow) located in a central pocket (phenols can also

n channel formed by three acidic residues (Glu36, Glu40, and Asp175)

ed view (right) showing the partially exposed side-chain (yellow

n (Trp164) involved in the oxidation of lignin, veratryl alcohol (VA), and

cofactor (surface colors correspond to electrostatic charge).
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Table 1

Comparison of genes potentially involved in lignocellulose

transformation in the genomes of the model white-rot fungus

P. chrysosporium [19�,36,43] and the model brown-rot fungus P.

placenta [39��]

White-rot

genome

Brown-rot

genome

Total proteins predicted 10,048 17,173

Proteins potentially involved in

Lignin degradation

Lignin peroxidases (LiP) 10 0

Manganese peroxidases (MnP) 5 0

Low redox-potential peroxidases 1 1

Iron reduction

Multicopper oxidases

(Fe-oxidases/laccases)

4 (1/0) 5 (1/3)

Quinone reductases 4 1

Cellobiose dehydrogenases 1 0

Peroxide generation

Copper-radical oxidases 7 3

Pyranose-2 oxidases (GMC) 1 0

Glucose oxidases (GMC) 1 �5

Aryl-alcohol oxidases (GMC) 4 3

Methanol oxidases (GMC) 1 1

Total GMC oxidoreductases 35 45

Carbohydrate hydrolysis 282 242

Glycoside hydrolases (GH) 180 144

GH with cellulose-binding domain 30 0

Exocellobiohydrolases 7 0

Endoglucanases >40 2

b-Glycosidases 9-10 10

Esterases/transferases/expansins/lyases 19/68/11/4 10/75/7/6

Miscellaneous heme-protein reactions

Cytochrome P450-type enzymes 148 236

Chloroperoxidase-peroxygenases 1–3 8
how VP would oxidize lignin at the tryptophanyl radical,

while Mn2+ is directly oxidized by the heme at a second

narrow channel [25]. The existence of a catalytic protein

radical was indirectly suggested in the 2-electron acti-

vated form of LiP, and has been directly demonstrated in

VP using low-temperature electron paramagnetic reson-

ance [26��,27]. The role of the tryptophan radical in the

whole half-reaction has been recently confirmed by its

detection in both the 1-electron and 2-electron oxidized

forms of the enzyme [28�].

Most white-rot basidiomycetes and some other fungi [29]

and bacteria [30] also produce a multicopper oxidase

called laccase. Laccases have a low redox potential that

prevents the direct attack on lignin. However, in the

presence of small compounds forming stable radicals that

act as redox mediators [31], laccases oxidize lignin and

other recalcitrant compounds [32]. Although the bio-

logical significance of the laccase-mediator system in

Nature is to be established, it presents high biotechno-

logical interest. A mediating role is also played by the

Mn3+ ion formed during MnP and VP oxidation of Mn2+

(that acts as an oxidizer of phenolic structures and starter

of lipid peroxidation reactions), as well as by some aro-

matic radicals required for LiP oxidation of lignin, while

VP can oxidize lignin directly [1�]. In addition to expand-

ing the substrate range of some enzymes, these mediators

can penetrate sound wood, when the size of the cell-wall

pores is too small for the penetration of the enzymes.

Searching for lignin-degrading enzymes: the
impact of different ‘omics’
A large number of plant and microbial genomes relevant

for lignocellulose biorefineries are being sequenced [33��]
including those of Trichoderma reesei [34�], Pichia stipitis
[35�], and P. chrysosporium [36], three fungi of interest in

biotechnological transformation of cellulose, hemicellu-

lose, and lignin, respectively. The P. chrysosporium gen-

ome was the first basidiomycete genome sequenced

owing to the interest of the US Department of Energy

(DOE) on lignin biodegradation. Its main genes directly

involved in lignin degradation were already known [19�],
and only one new low redox-potential peroxidase gene

was provided by the genome [36]. However, its avail-

ability enabled the use of other ‘omics’ technologies.

Moreover, genes of peroxide-producing oxidases, and a

large set of P450-type genes, were identified. The P.
chrysosporium genome also ended a controversy on the

production of laccase by this fungus since no laccase

genes were present. The genomes of Pleurotus ostreatus
and Ceriporiopsis subvermispora, two white-rot fungi

secreting sets of ligninolytic enzymes different from that

of P. chrysosporium [17], will be soon available with DOE

support. Results with biotechnological application are

expected since C. subvermispora and some Pleurotus
species were selected some years ago for selective
www.sciencedirect.com
delignification of wood and nonwood lignocellulosic sub-

strates, respectively [37,38].

A second group of wood rotting basidiomycetes causes a

preferential removal of cellulose leaving a brown-colored

lignin residue. Very recently, DOE supported the

sequencing of the first genome of a brown-rot fungus,

Postia placenta, that was compared with the P. chrysospor-
ium genome (Table 1) [39��]. While oxidases and multi-

copper oxidases were present in both, high redox-

potential peroxidases only appeared in the white-rot

fungus genome, strongly supporting a central role in

lignin degradation. Interestingly, demethoxylation has

been reported as the main lignin modification during

brown-rot decay [40], and the methanol released seems

to be used to generate peroxide for cellulose attack (via

Fenton chemistry) since methanol oxidase overexpres-

sion was shown in transcriptome and extracellular pro-

teome (secretome) analyses [39��]. Simultaneously, the

P. placenta genome revealed an unexpected absence

of exocellobiohydrolase and cellulose-binding domain

genes (and low endoglucanase gene number), and a
Current Opinion in Biotechnology 2009, 20:348–357
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collection of P450 genes even larger than that found in

P. chrysosporium (Table 1).

Proteomic studies aim at identifying the main enzymes

involved in the extracellular attack to lignocellulose. LiP

and MnP were found on both liquid (using low-N ‘lig-

ninolytic’ conditions) and solid lignocellulosic cultures of

P. chrysosporium [41�,42,43] although the isoenzymes var-

ied revealing specific inductions. Numerous proteases

recycling limitant nitrogen in wood were also identified.

Secretomes of basidiomycetes and ascomycetes have

been combined to obtain a toolbox of enzymes of interest,

and VP was identified in the Pleurotus secretome [44].

The expression of LiP and MnP genes has been detected

in transcriptomic analyses using long serial analysis of

gene expression libraries of P. chrysosporium [45]. Meta-

bolomics has also been combined with proteomics to

elucidate degradative routes in P. chrysosporium [46].

Metagenomics is a powerful tool for mining genomic

resources in complex microbial communities, especially

when uncultured organisms are present [47]. Termites are

extremely successful wood-degrading organisms, but no

genes/transcripts of known lignin-degrading enzymes

were identified in their gut metagenome [48��] and

metatranscriptome [49]. However, evidence on lignin

degradation by termite gut microbiota has been obtained

by chemical analysis [50��]. Bovine rumen is another

complex community, and a novel laccase has been ident-

ified from a metagenomic expression library [51]. The

exponentially increasing number of sequenced genomes

including oxidoreductases involved in lignin degradation

requires specialized databases [52�] and new analysis

tools to integrate the data provided by the different

‘omics’ with the aim of developing synthetic biology

approaches.

Engineering lignin biocatalysts for
industrial use
‘Wild’ peroxidases and laccases are not well-suited for

industrial use that generally requires particular substrate

specificities and application conditions (including pH,

temperature, and reaction media) in addition to high

expression levels. Therefore, protein engineering is often

required to obtain highly expressed and efficient bioca-

talysts [53,54�].

When the structural basis of the property to be improved

is known, a rational approach will be possible. Consider-

ing the current structural knowledge on ligninolytic per-

oxidases [23], engineering their catalytic sites or even

transferring them to another enzyme is feasible. Engin-

eering the lignin oxidation site has been recently

explored by changing the aromatic residue forming the

catalytic radical [28�] or its environment [55]. Other

peroxidase regions have been modified by site-directed

mutagenesis in a variety of studies aiming to obtain new
Current Opinion in Biotechnology 2009, 20:348–357
or improved catalytic properties (see Refs. in [23]), in-

cluding several patents [56,57]. Improvement of peroxi-

dase resistance toward inactivation by peroxide, a

bottleneck in many applications [58], can be addressed

by directed evolution (see below); however, directed

mutagenesis of oxidizable residues at the distal side of

the heme could be an alternative approach.

The environment of catalytic coppers has been the target

for site-directed mutagenesis of laccases aiming at mod-

ifying their redox potential [59]. This seems feasible

because a wide range exists between high redox-potential

basidiomycete laccases and low redox-potential ascomy-

cete and bacterial laccases. Since the two latter present

some biotechnological advantages related to easier

expression, increasing their redox potential would result

in useful biocatalysts. Among other possible changes, a

distal phenylalanine residue has been proved to contribute

to high redox potential. A semi-rational approach based

on combinatorial saturation mutagenesis at the copper

environment, has also been applied to improve the

below-mentioned laccase of the ascomycete Myceliophthora
thermophila [60]. Chimeric enzymes are being constructed,

and tailor-made multienzymatic systems could be

designed, for example using the cellulosome model [61].

Directed evolution, based on different methods to gen-

erate diversity and high-throughput screening, is a very

powerful tool for enzyme engineering [62,63]. Evolution

of a low redox-potential basidiomycete peroxidase to

improve its stability in detergents was one of the first

examples [64]. However, no successful evolution of lig-

ninolytic peroxidases (resulting in a significant improve-

ment of the target property) has been reported owing to

the lack of sufficient enzyme expression. Nevertheless,

detectable levels of expression in yeast have been

recently obtained [65], which could potentially be

improved by directed evolution. The situation is similar

for laccases, and the evolution studies have focused on the

low redox-potential enzyme from the ascomycete M.
thermophila that was first evolved for high-level expres-

sion, and then modified for improved properties [66��].
The successful evolution of basidiomycete laccases has

not been described yet. Although only modest results

have been obtained using wild-type genes [67,68], a

basidiomycete laccase gene evolved for high functional

expression in yeast has been recently patented [69].

Obviously, the lack of efficient microbial expression

systems also limits the industrial production of some of

these enzymes [54�], and different alternatives are being

explored including their production in the same plants to

be used as biorefinery raw materials [14�].

Enzymatic delignification and modern lignin
analytical techniques
It is opportune to mention here the strong impact

expected from the application of modern lignin analytical
www.sciencedirect.com
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Figure 3

2D NMR spectra of eucalypt lignin solution (top) and wood gel (bottom)

in HSQC (heteronuclear single quantum correlation) experiments. Cross-

signals of different lignin substructures are identified: A, b-O-40

structures; B, resinol structures; C, phenylcoumaran structures; D,

spirodienone structures; F, cinnamyl alcohol end-groups; G, guaiacyl

unit; S, syringyl unit; and S0 and S00 oxidized syringyl units with

conjugated carbonyl or carboxyl groups (1H–13C correlations at

positions 2, 5, and 6 of the benzenic ring and a, b and g of the side-

chain; MeO, methoxyls). Some polysaccharide (hemicellulose) cross-

signals were also identified: X and X0, normal and acetylated

xylopyranose units, respectively; and U, 4-O-methylglucuronic acid

units. Adapted from [72].
techniques, such as two-dimensional nuclear magnetic

resonance (2D NMR), in enzymatic delignification and

lignin valorization studies. The availability of 2D NMR

spectroscopy based on correlations between 1H and 13C

nuclei in lignin represents an extraordinary advance in the

structural analysis of this complex polymer (Figure 3,

top). Using this technique, signals overlapping in one-

dimensional spectra can be resolved, and new lignin

precursors and substructures have been discovered

[2,3,70��].
www.sciencedirect.com
During the last years, 2D NMR was successfully used to

characterize lignin in plants with modified biosynthesis

[3,13�]. In contrast, its use in enzymatic delignification

studies is still at the beginning, and a promising future is

expected to identify polymer modifications that are not

revealed by other analyses. Even more promising is the in
situ analysis of lignin by NMR of the whole lignocellulosic

material at the gel stage [71�,72]. Using this new meth-

odology, problematic and time-consuming isolation pro-

tocols are avoided, and the main lignin signals can be

analyzed without significant overlapping with the poly-

saccharide signals (Figure 3, bottom).

Ligninolytic oxidoreductases reaching the mill
Lignin-degrading oxidoreductases are enzymes of indus-

trial interest in lignocellulose biorefineries (for cell-wall

delignification in cellulose and ethanol production, func-

tionalization of fibers, production of adhesives, and modi-

fication of lignins and other aromatic compounds) including

both laccases [73,74�,75] and peroxidases [54�,76].

The laccase-mediator system is commercialized for appli-

cation in several sectors (including textile) and ready to

use for the delignification of paper pulp [32,74�]. The cost

and potential toxicity of synthetic mediators, such as –
N(OH)– compounds, was a drawback for years. However,

recent papers have shown the potential of simple phenols,

some of them derived from lignin, as inexpensive and safe

(natural) mediators for laccase delignification [77�,78].

Unexpectedly, it has been recently found that the laccase-

mediator systems also efficiently degrade pulp lipophilic

compounds including sterols, resin acids, glycerides, and

fatty acids [79��]. These lipids cause important operational

and economic troubles in pulp and paper manufacture

(because of pitch deposition) and laccase-mediator remove

them irrespective of the raw material and the pulping

method. Moreover, the new phenolic mediators are also

very efficient in pitch removal. This double effect increa-

ses the interest on the laccase-mediator systems, whose use

for both industrial applications (delignification and pitch

removal) has been recently protected by a new patent [80].
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