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ABSTRACT This article presents SOMCD, an
improved method for the evaluation of protein sec-
ondary structure from circular dichroism spectra,
based on Kohonen’s self-organizing maps (SOM).
Protein circular dichroism (CD) spectra are used to
train a SOM, which arranges the spectra on a two-
dimensional map. Location in the map reflects the
secondary structure composition of a protein. With
SOMCD, the prediction of B-turn has been included.
The number of spectra in the training set has been
increased, and it now includes 39 protein spectra
and 6 reference spectra. Finally, SOM parameters
have been chosen to minimize distortion and make
the network produce clusters with known proper-
ties. Estimation results show improvements com-
pared with the previous version, K2D, which, in
addition, estimated only three secondary structure
components; the accuracy of the method is more
uniform over the different secondary structures.
Proteins 2001;42:460-470. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

A protein’s structure is closely related to its function,
and it is therefore of great interest to determine the
structure of a protein macromolecule. The prevailing and
most accurate method to determine the three-dimensional
structure of a macromolecule is X-ray crystallography and,
to date, some 7,000 proteins have been crystallized and
classified structurally. However, not all proteins are readily
crystallized, and even when possible, data collection is
often tedious and time-consuming. Moreover, with X-ray
crystallography, conformational changes in rapid-mixing
experiments cannot be studied.

When three-dimensional information is not accessible,
other methods that determine the secondary structure are
employed. The secondary structure of a protein depends on
its amino acid composition, whereby one approach is to
estimate protein secondary structure from amino acid
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sequence. An alternative approach is to use circular dichro-
ism (CD) spectroscopy, which measures the optical activity
of a protein in solution. The optical activity of a substance
depends on its structure, and indeed, CD spectroscopy
does provide information about protein secondary struc-
ture. Moreover, data can be collected continuously, where-
upon changes in structure due to ligand binding, for
instance, can be monitored. These arguments show that
CD spectroscopy is a valuable tool for studying the second-
ary structure of macromolecules and that it is of interest to
develop methods that relate CD spectra to structure.

In this article, we have used a self-organizing neural
network algorithm that manages to arrange CD spectra on
a two-dimensional grid. When a CD spectrum is presented
to the network, it is mapped onto a node of the grid. The
location of the node in the grid provides information about
secondary structure. The algorithm is based on Kohonen’s
self-organizing map (SOM) model,’ in which data of high
dimension are mapped nonlinearly onto a two-dimensional
map. Hereby, intrinsic features in the input data can be
extracted from location in the map.

The remainder of the discussion is organized as follows.
An attempt is made to place the problem in context,
describing Kohonen’s self-organizing map, and providing
some background on secondary structure prediction from
circular dichroism spectra. We then discuss the choice of
network parameters, and give details on the reference
protein set and the accompanying secondary structure
assignments. This is followed by a discussion of the
results, which are divided into four parts. The clusters of
the network are analyzed, followed by the construction of
structure maps, accompanied by an example. All methods

An implementation of the method presented in this article will be
available online at http:/somcd.geneura.org.
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described in this article are then compared, followed by a
discussion.

DESCRIPTION OF THE PROBLEM

Before describing our particular solution to the problem
of protein secondary structure prediction, a brief introduc-
tion to the functionality of neural nets is provided. The
methods used so far in secondary structure prediction,
including our own, are then reviewed.

Neural Nets

Neural nets (NN) are statistical techniques commonly
used for pattern recognition, forecasting and scientific
visualization.? It is impossible, and probably unfair, to
generalize about current neural net algorithms, so we will
focus only on the algorithm used in this article: Kohonen’s
self-organizing map.?

Kohonen’s SOM can be described as a single-layer,
feed-forward, nonsupervised neural net. As happens with
all the other NN (and many statistical algorithms), SOMs
must be “trained” before being able to perform whatever
they were designed to do. Training means presenting a set
of vectors to the NN, so that it changes its internal values.
In this case, the values by which each sample is classified
need not be set in advance, which is why it is called
unsupervised.

A SOM is basically a set of N-dimensional vectors in
which a neighborhood relation has been defined. They are
arranged in a two-dimensional grid, in such a way that
each vector or unit is the neighbor of six others. That is
why each unit is represented as a hexagon (another
possibility is each unit being a neighbor of another 8, in
which case each unit is represented as a square and the
map as a rectangle itself). A SOM must be trained for each
task. All vectors are initially set to a small random
quantity; training means selecting one vector from the
training set, computing the unit closest to it, and changing
that unit’s vector and all the neighbors to make them
closer to the input vector. The neighborhood arrangement
makes the map self-organize, so that close units respond to
contiguous zones in the input space, and since the neighbor-
hood decreases during training, each unit gets fine-tuned
to a particular zone in input space.

SOMs that have been trained with a particular training
set perform several tasks at the same time:

Clustering: By analyzing its results, clusters, that is,
natural groups, can be discovered in the data.

Nonlinear projection: This capability keeps metric dis-
tances.

In this article, both capabilities are used: the first to
check that proteins with similar secondary structure are
mapped close to each other, and the second to map
unknown proteins and assign them secondary structure
values.

Circular Dichroism

It has long been known that the ultraviolet (UV) CD
spectrum of a protein in solution can be related to the
overall secondary structure composition of the protein.*~7
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Given a CD spectrum, it is possible to determine the
fractions of, for instance, a-helix (H), B-sheet (E), and
B-turn (7)) in the protein of interest. The problem has
always been how to determine the contribution of each
structure component to the final spectrum.

Most methods simply assume that each structure compo-
nent produces a characteristic basis spectrum, or reference
spectrum b(\).>~7 More specifically, one assumes that a
reference spectrum is obtained from a polypeptide consist-
ing only of one secondary structure element (e.g., a-helix).
Therefore, the CD spectrum c¢(\) of a protein can be
reconstructed as the linear combination of the base spectra
multiplied by the abundance of the respective structure
elements:

n

c\) = X fib(\) (1)

i=1

Here, n is the number of secondary structure components,
and f; is the fraction of structure i in the protein.

The main problem with this approach is that the refer-
ence spectra are difficult to define.® The results for a-heli-
cal content are often satisfactory, because the spectra of
proteins with high a-helical content are very similar to the
a-helix reference spectrum.® However, the remaining struc-
tures, especially B-turn, pose difficulties.

Moreover, the assumption that a CD spectrum is a
linear combination of secondary structure component spec-
tra is not completely correct.'®'! Aromatic groups may
contribute to the overall spectrum, as may the interactions
between amino acids far off in the sequence (tertiary
interactions). Moreover, the contribution of a-helix to the
spectrum depends on chain length. Therefore, various
techniques, based on statistics, have been developed over
the years that avoid using pure reference spectra’® and
that try to overcome the deficiencies of pure linear meth-
ods.

Ridge regression® reconstructs a CD spectrum from a
basis set of CD spectra from proteins with known second-
ary structure compositions. A spectrum in the basis set
that shows little resemblance to the problem spectrum
contributes less to the final reconstruction. This method
greatly improved the estimation of B-structures. However,
it suffers the drawback that results depend on the proteins
in the basis set. Variable selection'® is based on the same
ideas, except that a subset of the entire basis set is used in
the reconstruction. The evaluation of protein conformation
in solution is excellent. The disadvantage is that the
method requires considerable computing time to find the
subset that best reconstructs the problem spectrum. By
doing some sort of averaging of the contributions from the
reference spectra, the assumption of linearity can be
overcome.'! The selcon method'* is a modification of
variable selection. It improves speed by first arranging the
spectra in the basis set in RMS distance from the problem
spectrum.

An alternative technique, which does not use X-ray
crystallographic data, is convex constraint analysis.'® This
algorithm calculates chiral spectra components from a set
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of spectra. These chiral components are then used to
reconstruct the problem spectrum. The evaluation of
B-structures is poor compared with other methods. How-
ever, this technique is well suited for examining the
spectra of proteins as a function of temperature, pH value,
or ligand binding.

Some of the latest improvements include the estimation
of six secondary structure categories'® and the estimation
of the number of a-helical and B-strand segments in
proteins from CD spectra.!’ Recently, Pancoska et al.’®
have designed a matrix descriptor for secondary structure
segments that estimates the connectivity and numbers of
segments.

With the introduction of neural networks, another
nonlinear approach was enabled. With the program K2D,
a neural network, based on Kohonen’s self-organizing
maps, is trained with a set of protein spectra. Training is
done in an unsupervised manner, and the algorithm itself
organizes the spectra in a meaningful way on a two-
dimensional discrete output space. This eliminates the
problem that the final reconstruction will depend on the
basis set of protein spectra used, as in ridge regression.
Moreover, once parameters that give good self-organiza-
tion have been found, estimation of protein secondary
structure from a problem spectrum is straightforward and
instantaneous.

The methods described in this section were reviewed by
Greenfield.'? For a detailed discussion of CD spectroscopy,
see the review by Woody.'® The method presented in this
article is based on the K2D algorithm,®2%2! which esti-
mated the fractions of a-helix and B-sheet of a protein in
the wavelength range 200-240 nm. With the SOMCD
method, the lower wavelength limit has been extended to
190 nm. In addition, the evaluation of the fraction of
B-turn has been included. These improvements have been
made possible due to an addition of more proteins to the
training set, which now includes 39 protein CD spectra
plus an additional six reference spectra.

MATERIALS AND METHODS

The parameters that govern network performance are
briefly described. In addition, the definition of distortion, a
useful measure that provides information about network
performance, is introduced. This discussion is not intended
to be a self-contained theoretical description of neural
network parameters. Such information can be found else-
where. 1322

17,18

Network Parameters

The network is based on the self-organizing maps pro-
posed by Kohonen.! It consists of an input layer of n
neurons, each of them corresponding to one wavelength,
and a square output layer of m X m neurons. A training set
of CD spectra from proteins with known three-dimensional
structure is presented to the network, and if suitable
parameters are chosen, the algorithm organizes the CD
spectra topologically onto the two-dimensional output
layer.

The previous estimation method, K2D, used a square
lattice of 13 X 13 neurons.'® The training set consisted of
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24 CD spectra, taken from Yang et al.?® The size of the
training set determines the output layer size. Conse-
quently, a larger training set would make it possible to
increase the number of output neurons, which would make
the precision of prediction better. We have increased the
training set, which now consists of 39 CD spectra from
proteins with known three-dimensional structure as well
as six reference spectra, all taken from previous ar-
ticles.3-25-26

A valuable measure to evaluate network performance is
distortion,'®2° which can be defined as

p- 3

s € sample

ke, — wil? 2

where x, is the sample vector, and w,; is the winning
neuron. Since the sample vector must not be included in
the training set, the network is trained with 44 spectra,
and the remaining spectrum serves as the sample. By
letting all the spectra in the training set serve as the test
sample in turn, an average distortion over the entire
training set can be calculated. This value is used to
estimate network size and other network parameters.

Distortion was calculated for different network architec-
tures, output layer size and network parameters. A low
value of the mean distortion indicates that training has
proceeded well, but it is also necessary to examine the
clusters that have formed (see the section, Results, Cluster-
ing). It is desirable for the euclidean distance between
weights of neighboring neurons within clusters to be
small, and that these weights are closest to spectra from
proteins with similar secondary structure compositions.

With these guidelines, optimal network parameters and
size of output layer could be set. Distortion did not vary
much for networks of sizes from approximately 16 X 16 to
20 X 20 (data not presented here). An output layer size of
16 X 16 was therefore chosen since larger networks give
longer calculation times. The remaining parameters were
chosen so that the clusters fulfilled the above mentioned
criteria. This step can be done more systematically, using,
for instance, simulated annealing.

Learning Parameters

As pointed out earlier, during training, or learning, the
training set is presented to the network a prescribed
number of times. The network changes its internal values,
or weight vectors, according to the following learning rule:

Swjk = ot(xi - ij) (3)

where w;, is the weight vector located at grid position j,%; x;
is training vector i; and « is the learning rate parameter, a
time-decreasing function that imposes convergence on the
weights. The weights to be updated are the set of weights
that are located in the neighborhood of the weight vector,
which is closest to the current training vector. When
training starts, the neighborhood function includes all
neurons in the map and decreases with time, ultimately
including only the closest neurons to the winning neuron.
Training of the network was done with som_pak?®? (URL:
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cochlea.hut.fi/research), a program package that imple-
ments the SOM algorithm.

Reference Protein Set

The proteins used in this article are presented in Table
II. Also listed are the Protein Data Bank (PDB) files used
to determine secondary structure, the abbreviated names
of the spectra as they will appear later on in this work, the
sources of the spectra, and the secondary structure values
used for each protein.

The PDB files were chosen so that, if possible, the
species of the PDB file matched the species of the protein
used to collect the CD spectrum. Moreover, if more than
one possible PDB structure was available for the same
species, the one with the best resolution and the best
R-value was chosen. Some crystal data have a resolution
worse than 2.0 A and an R-value of >0.20 (1a8m, leri,
1sbt, 2sbt, 91db), which most researchers regard as too
poor for the protein to be included in the basis set.'® In
order to provide the network with as large a training set as
possible, these were not discarded.

A word of notice is in order. Since the fractions of
secondary structures in a protein add up to unity, an extra
structure class can be defined by subtracting the fractions
of the well-defined structure classes from one. In the K2D
method, this meant subtracting the fractions of a-helix
and B-sheet from one, and the third class was referred to as
“random coil.” This denomination is not entirely correct,
since the unclassified amides of a protein do have some
sort of defined static structure, although not belonging to
any designated class of secondary structure. The term
random coil refers to a dynamic peptide. In this article,
amides not classified as belonging to any of the structures
a-helix, B-sheet, or B-turn are referred to as other (O).
Nevertheless, the random reference spectra are used as
references for the “other” class. We use the term random
reference spectra, since one of them is a CD spectrum of a
free linear polypeptide, which clearly justifies the use of
the word random. The other spectrum is a theoretical
result from multilinear regression, and should in some
sense be referred to as “other,” but since the name random
was used in the original article,?® we stick to this denomi-
nation here. With this clarification of the use of both terms
in the following, we now proceed with the secondary
structure assignments.

Secondary Structure Classification

The secondary structure values were calculated follow-
ing a variant of the DSSP?? algorithm, which is imple-
mented in the program Promotif.?® The amino acid resi-
dues are labeled H and 4 for a-helix, G and g for 3;,-helix,
E and e for B-sheet, and 7" and ¢ for B-turn. Several
assignments were used and tested in the method. The
results presented are for the assignment giving the best
performance. Residues assigned H, h, G, and g were
classified as a-helix, residues assigned E were classified as
B-sheet, residues assigned T were classified as B-turn, and
residues assigned ¢ and e, as well as unassigned residues,
were classified as other (O). The percentages were then
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obtained by dividing the number of residues in each class
by the total number of residues in the protein.

RESULTS

The results from our analysis of network clustering are
presented. With the help of clusters, it is shown that the
network has preserved structural information in the map.
This allows for the construction of structure maps, which
are the key to understanding how this method works. An
example is included to shed some light on how the method
works. This is followed by a comparison of the performance
of other methods.

Clustering

One of the programs included in the som_pak package,
umat, allows the visualization of the formed clusters using
the Umatrix algorithm.?® The output of the program umat
for a run with the parameters set as indicated in the
previous section is shown in Figure 1.

Each neuron is labeled with a three- or four-letter
sequence. Neighboring neurons are separated by a hexa-
gon, which is gray color shaded. The color of a hexagon
separating neurons indicates the euclidean distance be-
tween the weight vectors of the neurons it joins; the darker
the hexagon, the larger the distance. The euclidean dis-
tance d between two neighboring neurons with weight
vectors x and y is calculated as

. 12
d(x,y) = lz (o, — yi)z] (4)
i=1

where n is the number of wavelengths considered. Conse-
quently, clusters consist of white or light gray areas
surrounded by darker-colored hexagons.

The labels in Figure 1 correspond to training spectra.
Each training spectrum is provided with a unique letter
sequence. The reference spectra all begin with a capital
letter, with A for a-helix, B for B-sheet, and R for random
(Table II). Visual inspection of Figure 1 verifies that a
given training spectrum is locally mapped to a region of
the network.

Two clusters are especially prominent, being located at
the lower right and lower left corners of the network. They
are separated from the rest of the map by streaks of dark
hexagons. In the lower left corner, the weights have as
closest training spectra both «-helix reference spectra
(Ayan and Acur). Consequently, the neurons of this cluster
have modified their weight vectors during training, mak-
ing them similar to spectra from proteins with high
a-helical content. Moreover, although the distances to the
weight vectors of the neurons just outside the cluster seem
to be large, judging by the color of the separating hexa-
gons, it is interesting to note that also these neurons are
labeled with spectra from all-a proteins (classification
done according to SCOP.°) Among these are myoglobin
(myo), hemoglobin (hem), and hemerythrin (hmr). Appar-
ently, spectra from all- proteins have been mapped to the
lower left region of the network.
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Bbrb Byan Byan Byan. iazu azu azu cpa
Bbrb Byan Byan sun azu azu ald cpa
Bbrb Bbrb Byan sun  sun  sun ald ald

Bbrb thr thr sun sun sun ald ald

Byan thr thr thr sun  sun fla fla

tpi thr thr lad sun cyt fla fla
tpi tpi lad lad lad cyt cyt cyt
rho

hmr thr rho bpn

Zitho  rtho  lac
hmr tpi . lac lac lac

pgk lac lac lac

myo  hem

myo

Ayavn' AyanV Acur

Ayan Aou

Ayan Ayan Acur Acur

Fig. 1.

cpa

ald ald

fla tau tau tau tnf tnf

otd gtd blg blg

rho cyt cyt gtd

bpn

bpn

glu ria ria

glu ria ria
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cpa pre cna cna cna gcr gcr

cpa cpa pre cna cna tnf tnf ger

pre pre tnf tnf imu imu

pre tau pre pre tnf imu imu bjp

imu bjp

bpn tau tau pre pep try try try

pep  pep try try

gtd blg blg pep pep  pep try try

bpn big pep pep  pep try ela

bpn blg sod sod sod chy ela ela

sod sod chy chy ela

ria ria ria sod chy chy chy

pap chy cas

pap pap cas cas

pap chy rub cas

chy rub Ryan

Ryan

cgn  cgn

Output of program umat, showing the nodes of the network surrounded by nonlabeled hexagons, which represent the distances between

them. Each neuron is labeled with a three- or four-letter sequence, where the letter code represents the closest training spectrum to the neuron. The gray
scales indicate the euclidean distance between the weight vectors of adjacent neurons. Darker hexagons indicate a larger distance.

In the lower right corner, a cluster of four neurons is
visible. All neurons are labeled with one of the random
reference spectra, indicating that the weights are similar
to spectra from proteins in the other class. Although the
second random reference spectrum does not appear as a
label, it is the second closest training spectrum to all
neurons in this cluster (data not presented).

In the upper left corner, a group of neurons are labeled
with the B-sheet reference spectra. The fact that reference
spectra are mapped to the corners of the network was
noted already by Andrade et al.'® and was to be expected.
However, all-B proteins do not map to the upper left region
of the map. Instead, all-B proteins with the highest B-sheet
content of the proteins in the training set, such as y-crystal-
lin (ger), immunoglobulin-\ (imu), thaumatin (tau), tumor
necrosis factor-a (TNF-«) (tnf), and prealbumin (pre), are
found in the upper right corner. As pointed out earlier,
only the o-helix reference spectra show resemblance to
spectra from proteins with high «-helical content.® Since
the spectra of all-B proteins in the training set do not
resemble the corresponding reference spectra, they are not
able to form stable clusters with the reference spectra.
All-B proteins with lower B-sheet content, such as pepsino-
gen (pep), elastase (ela), a-chymotrypsin (chy), carbonic
anhydrase (cas), chymotrypsinogen A (cgn), and superox-
ide dismutase (sod), are mapped to the lower right corner
of the map, thus surrounding the “other” cluster. Conse-

quently, the rightmost region of the map corresponds to
all-B proteins, excluding the “other” cluster.

In the remaining portions of the map, the distances
between weights of neighboring neurons are relatively
small. Here, mostly o/ and o + B proteins are found. Still,
some anomalies can be found. The clusters of cytochrome ¢
(cyt) and thermolysin(thr) are found in this region, with
the thr cluster close to the cluster of the B-sheet reference
spectra.

Despite the anomalies, the facts just presented indicate
that the weight vector arrangement is related to structure.
Therefore, structure information from the network re-
mains to be extracted.

Structure Maps

After training, the algorithm has organized the spectra
topologically (the terminology in Andrade et al.'® was
proteinotopic mapping) on a two-dimensional grid, in
which each node corresponds to a weight vector, or a
spectrum. The algorithm has constructed this spectrum by
nonlinear interpolation of the spectra in the training set.
Neighboring nodes display similar weight vectors if good
self-organization has taken place.

Following the procedure developed by Andrade et
al.,'® structure maps can be constructed. The basic idea
is that every node is assigned a complete set of structure
fraction values. For the sake of clarity, structure values
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a-helix

f-sheet

[-turn

other

Fig. 2. Constructed structure maps using L = 3. Red implicates high neuron structure values, blue low values.

TABLE I. Structure Values Estimated for Thermolysin'

Secondary structure

component® Actual value Estimate
H 0.48 0.45 = 0.17
E 0.17 0.16 = 0.03
T 0.09 0.08 = 0.06
0 0.27 0.31*0.14

fStandard deviation of secondary structure values is computed over
the three structures used for averaging (see the section, Structure
Maps).

2H, a-helix; E, B-strand; T, B-turn; O, other amides not classified as
belonging to any of the previous categories.

corresponding to neurons will be called neuron structure
values. In our case, a complete set means the structures
a-helix, B-sheet, B-turn, and other. For every weight
vector, the spectra in the training set are organized in
the order of increasing euclidean distance. The node is
then assigned a combination of the structure fraction
values of the L closest spectra in the training set. For
example, in Figure 1, each label corresponds to the
closest spectrum. The parameter L, which determines
how much structural information is extracted from the

10 T T T T T T T

Ac(liters/mol )

— ¥
i
/{ +
+
v 4
T
/ et
f
7
ey /,)4 !
4 S = S ++ ] L L
190 195 200 205 210 215 220 225 230 235 240

Wavelongth (mn)

Fig. 3. Circular dichroism (CD) spectrum of thermolysin (—) and the
weight vector of the winning neuron (+).

training set, is called the scope of the method. More
specifically, for structure s, the neuron structure value f,
for neuron j,k can be calculated as the mean of the
structure values of the L closest spectra:
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- LL: Vilsi :
fsjk=¥, N=Z;vi (5)
where f, ; is the structure fraction value for the ith closest
training spectrum, and v, is the inverse of the distance
between the weight vector and the ith farthest training
protein. Thus, the factor v, determines the contribution of
the ith structure fraction value to the calculation of the
neuron structure value. The more similar a training
spectrum is to a weight vector, the more importance
should be laid on the secondary structure composition of
this protein.

The higher the scope, the more structural information is
extracted from the training set. However, an excessively
large scope will also introduce more noise. Calculation of
the standard deviation of the expression in Eq. 5 gives the
error of the corresponding structure value:

1 & i}
Sik = A\IN =1 ;vi(fs,i - fs,;'k)2, N = E Vi (6)

i=1

When a CD spectrum of a protein with unknown secondary
structure is presented to the trained network, the neuron
structure values of the winning neuron, derived from Eq. 5
are the estimated structure values of the protein. The
error of the estimate is given in Eq. 6.

It is important to keep in mind which aspects of the
method are based on linear approaches and which are
based on nonlinear approaches. The neuron structure
values of a neuron are a linear combination of the struc-
ture values of the proteins whose spectra are most similar
to the weight vector of the neuron in question. However,
the weight vectors are not linear combinations of the
spectra in the training set. In other words, although the
neuron structure values are assigned linearly, the weight
vectors are obtained by nonlinear combinations of the
spectra in the training set.

For the training set used in this work, a scope of three
gave the best results. In Figure 2, the structure maps for
secondary structures with L = 3 are shown. To facilitate
visualization, the neuron structure values have been plot-
ted separately for each secondary structure element.

These maps correspond to the network in Figure 1.
Examination of the structure maps shows that for the
B-sheet structure, high Bvalues are found in two corners,
one where the reference spectra are mapped, and one
where all-B proteins are mapped. Nevertheless, it is impor-
tant to include reference spectra, since they provide not
only high extreme values, but zero values as well. This is
important for the construction of complete structure maps.

Example

Suppose we want to estimate the structure values of
thermolysin (H = 0.48, E = 0.17, T = 0.09, O = 0.27). The
network is first trained with the training set, excluding
thermolysin. Then, the weight vector that is closest to the
thermolysin spectrum is chosen as the winning vector. The
closest training spectrum to this weight vector is that of
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lactate dehydrogenase (LDH). If only one spectrum were to
be used for the neuron structure values, the structure
values of LDH (H = 0.52, E = 0.18, T = 0.05, O = 0.24)
would be assigned the winning neuron, and consequently,
also to thermolysin.

Since a scope of 3 has been used in this work (see above),
the structure values of the following two closest spectra
are used. The second closest spectrum is subtilisin novo
(H=027,E =0.14, T = 0.14, O = 0.46), and the third
closest spectrum is triose phosphate isomerase (H = 0.57,
E =0.14, T = 0.05, O = 0.24). The distances for the three
closest spectra are 4.73, 6.45, and 8.34, respectively. Using
the inverse values of the distances as the factor v in Eq. 4,
the final estimation of the secondary structure composition
of thermolysin is as shown in Table I.

The standard deviation from Eq. (6) is given as the
estimation error. Note that percentages do not necessarily
have to add up to 1, since it is an approximation. In Figure
3, the winning vector is plotted with the CD spectrum of
thermolysin.

Method Evaluation

The performance of the SOMCD method was evaluated
by determining the secondary structure composition of all
the proteins in the training set. The network was trained
with all spectra except one, for which the secondary
structure composition was determined. Success of struc-
ture estimation was obtained by comparing the estimated
values with the X-ray crystallography data and calculating
the RMS deviations and Pearson correlation coefficients.

The estimated structure values of the 39 proteins are
shown in Table II. The worst results are obtained for
cytochrome C (cyt). This is not surprising, since in Figure
1, the cluster of ¢yt is found in a region with o/B- and « +
B-proteins, separated from the all-a region. When training
the network without cyt, it is therefore likely that the
neuron with the most similar weight vector will be found
outside the all-a region, thus giving too high a B-sheet
value in the estimation process.

The results of the evaluation are shown in Table III.
Comparisons are made with the methods described in
earlier in the section, Circular Dichroism.

Overall, SOMCD obtains a good prediction for all second-
ary structures except in the case of B-turn (when consider-
ing the correlation coefficient). Even in this case, results
could be improved if the spectrum of B-turn possible values
increases, as can be seen in Figure 4, where a histogram
plot of the B-turn values in the training set is displayed.
Evidently, most proteins have B-turn content close to 10%,
which limits the range of possible B-turn values in the
structure map.

DISCUSSION

This work presents a method that evaluates the second-
ary structure of a protein from UV circular dichroism
spectra. It represents an improvement of the K2D algo-
rithm'® and also obtains results similar to those of other
linear methods. More protein spectra have been added to
the training set, the evaluation of the B-turn structure has
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TABLE II. Estimated Structure Values Compared With X-Ray Structures’

Protein PDB CD* Source” Method H SD E SD T SD 0 SD
Alcohol dehydrogenase ~ 2ohx ald P SOMCD 040 005 022 003 012 001 026 0.03
Xray 033 0.24 0.11 0.32
Azurin 2aza azu C SOMCD 035 003 023 002 011 001 031 0.02
Xray 020 0.33 0.14 0.33
Bence-Jones protein 1rei bjp C SOMCD 0.10 0.02 047 001 009 000 034 0.02
Xray 005 0.49 0.12 0.34
Bovine B-lactoglobulin 1beb blg C SOMCD 022 003 038 003 011 000 029 0.01
Xray 024 0.43 0.09 0.25
Carbonic anhydrase 1ca2 cas P SOMCD 015 001 029 003 017 0.02 040 0.01
Xoray 021 0.29 0.11 0.40
Chymotrypsinogen A 2cga cgn P SOMCD 019 0.00 0.28 001 014 0.01 0.39  0.00
Xray 0.16 0.32 0.14 0.38
a-Chymotrypsin 5cha chy C SOMCD 015 002 033 002 013 001 039 0.01
Xray 0.14 0.33 0.12 0.42
Concanavalin A (Con 1nls cna C SOMCD 011 007 043 005 010 0.01 037 0.03
A)
Xray 0.08 0.45 0.08 0.40
Carboxypeptidase A larl cpa Y SOMCD 039 004 023 002 011 000 027 0.02
Xray 046 0.16 0.09 0.30
Cytochrome C 5cyt cyt C SOMCD 039 001 024 003 011 001 027 0.02
Xray 050 0.00 0.15 0.36
EcoRI leri eco C SOMCD 046 002 013 003 016 001 026 0.01
Xray 038 0.19 0.13 0.30
Elastase vy ela C SOMCD 017 002 031 001 012 001 041 0.01
Xray 0.14 0.34 0.15 0.37
Flavodoxin 2fx2 fla C SOMCD 037 003 019 003 012 0.00 032 0.01
Xray 044 0.25 0.11 0.20
v-Crystallin lamm ger C SOMCD 006 002 045 000 0.08 0.00 041 0.02
Xray 013 0.46 0.07 0.35
Glutathione reductase 3grs glu P SOMCD 034 003 026 004 012 001 027 0.01
Xray 041 0.24 0.09 0.27
Glyceraldehyde 3-P lgdl gtd C SOMCD 041 002 016 002 013 0.00 030 0.01
dehydrogenase
Xray 036 0.28 0.10 0.26
Hemoglobin la3n hem C SOMCD 080 0.02 003 001 006 000 012 0.01
Xray 0.86 0.00 0.06 0.09
Hemerythrin 2hmq hmr C SOMCD 075 000 0.08 000 006 0.00 012 0.00
Xray 077 0.00 0.06 0.17
Immunoglobulin A 8fab imu P SOMCD 003 000 046 001 0.09 0.00 042 0.02
Xoray 0.12 0.48 0.09 0.31
Lactoferrin 1ef lac P SOMCD 041 001 012 001 010 0.00 037 0.02
Xray 040 0.18 0.16 0.26
Lactate 9ldb lad C SOMCD 051 004 015 000 0.07 0.01 027 0.03
dehydrogenase
(LDH)
Xray 052 0.18 0.05 0.24
Lysozyme 3lzt lys C SOMCD 038 001 020 002 012 001 030 0.01
Xray 050 0.06 0.19 0.25
Myoglobin 1mbd myo C SOMCD 086 006 001 001 004 0.02 009 0.04
Xray 0.86 0.00 0.07 0.08
Papain 1ppn pap C SOMCD 019 008 035 002 011 001 034 0.05
Xray 034 0.18 0.09 0.39
Pepsinogen 3psg pep C SOMCD 016 0.04 042 002 010 000 031 0.03
Xray 027 0.38 0.09 0.26
3-Phosphoglyceric 1php pgk C SOMCD 059 008 013 003 006 0.02 022 0.04
phosphokinase
Xray 052 0.16 0.07 0.24
Prealbumin 1tyr pre C SOMCD 021 003 039 001 009 000 032 0.03
Xray  0.07 0.47 0.11 0.35
Rhodanese 1rhs rho P SOMCD 040 0.02 016 003 015 001 029 0.02
Xray 040 0.13 0.09 0.39

Ribonuclease A Trsa ria C SOMCD 0.27 0.06 0.37 0.06 0.09 0.00 0.27 0.01
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TABLE II. (Continued)
Protein PDB CcDh* Source? Method H SD E SD T SD 0 SD
Xray 026 0.33 0.13 0.28
Rubredoxin liro rub C SOMCD 019 001 030 000 012 000 039 0.00
Xoray  0.17 0.15 0.26 042
Subtilisin BPN' 1sbt bpn C SOMCD 038 001 026 002 010 0.00 026 0.01
Xray 0.36 0.18 0.13 0.33
Subtilisin novo 2sbt sun C SOMCD 039 004 019 004 011 001 031 0.02
Xray 027 0.14 0.14 0.46
Superoxide dismutase 1sxn sod C SOMCD  0.21 0.03 0.31 004 011 0.01 037 0.04
(SOD)
Xoray  0.09 0.39 0.12 0.40
T4-lysozyme 4lzm t4l C SOMCD 069 005 006 003 005 000 019 0.02
Xoray  0.77 0.09 0.06 0.09
Thaumatin 1thy tau P SOMCD 011 003 045 001 011 0.00 033 0.02
Xray 0.16 0.37 0.09 0.38
Thermolysin lhyt thr C SOMCD 047 003 016 001 007 001 030 0.03
Xray 048 0.17 0.09 0.27
Tumor necrosis factor la8m tnf C SOMCD 0.10 0.01 0.48 000 010 000 032 001
(TNF-o)
Xray 001 0.44 0.08 0.48
Triose phosphate lamk tpi C SOMCD  0.62 0.06 0.13 0.03 0.06 0.01 0.19  0.02
isomerase
Xray 057 0.14 0.05 0.24
Trypsin 5ptp try C SOMCD 014 002 034 003 013 0.00 038 0.02
Xoray 0.1 0.32 0.14 0.42
a-Helix reference Ayan Y 1.00 0.00 0.00 0.00
spectrum 1°¢
«-Helix reference Acur B 1.00 0.00 0.00 0.00
spectrum 2°¢
B-Sheet reference Byan Y 0.00 1.00 0.00 0.00
spectrum 1°¢
B-Sheet reference Bbrb B 0.00 1.00 0.00 0.00
spectrum 2¢
Random reference Ryan Y 0.00 0.00 0.00 1.00
spectrum 1°¢
Random reference Rbrb B 0.00 0.00 0.00 1.00
spectrum 2°¢

'H, a-helix; E, B-strand; T, p-turn; O, other amides not classified as belonging to any of the previous categories (see text for details regarding
secondary structure assignments). The estimated values, corresponding to lines where method = SOMCD, are the mean over 20 algorithm runs.
The standard deviations (SD) are included to show the invariability in the results. The reference spectra are included for completion of the
reference protein set (see text).

2The circular dichroism (CD) column lists the three- or four-letter abbreviations used for each CD spectrum.

PList of the sources for the protein CD spectra, where C = Manavalan and Johnson,'® P = Pancoska et al.,?* Y = Yang et al.,?* and B = Brahms and
Brahms.?®

°Three reference spectra are taken from Brahms and Brahms.?® The a-helix reference spectrum is the spectrum of sperm whale myoglobin, which
has been normalized to 100% helical content. The spectrum of poly(Lys*-Leu-Lys*-Leu) in 0.5 M NaF pH 7 has been used as a model for the
B-sheet reference spectrum, whereas the random reference spectrum was obtained from poly(Pro-Lys " -Leu-Lys*-Leu) in salt-free solution. The
remaining three (source Y) are standard spectra for a-helix, B-sheet and random coil conformation extracted from 15 proteins by multilinear
regression by Yang et al.2® We chose to use the same reference spectra as in Andrade et al.'®

been included, and the wavelength range has been ex-
panded. CD spectra are used to train an unsupervised
learning neural network, by which the spectra are mapped
topologically onto a grid of nodes. Neighboring nodes have
similar weight vectors, and correspond to similar struc-
tures, as is shown by the umat graph, which means that
similar spectra are mapped to the same local region of the
map. Continuity of the weights is essential for creating
good structure maps.

Examination of the clusters has made it easier to verify
the continuity between the weight vectors of neighboring

neurons. If the cluster representation in Figure 1 does not
display dark-colored regions, the distances between weights
is small in all local regions of the map. This feature of the
som_pak program package provides an excellent guidance
in determining whether the network has achieved good
self-organization or not. It is, in fact, as important to take
into account as network distortion. Clustering also pro-
vides a first approach to secondary structure prediction: an
estimation of the secondary structure percentages can be
done on the basis of the zone of the map the spectrum falls,
or the label of the neuron that is closest to it.
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TABLE III. Comparison of Different Methods of Prediction of Secondary Structure Values Using Pearson Correlation
Coefficients () and RMSD (5)"

H E T (0]

Method Range Proteins d r d r 3 r d r
Lin. reg.®? 205240 18 0.10 0.96 0.17 0.94 0.12 0.31 0.15 0.49
SVDP 190260 16 0.04 0.98 0.20 -0.27 0.09 0.18 0.17 0.24
CONTIN® 190240 18 0.05 0.96 0.06 0.94 0.10 0.31 0.11 0.49
VARSLCP 190-260 16 0.07 0.95 0.13 0.45 0.05 0.54 0.08 0.69
SELCON® 178-260 16 0.08 0.96 0.07 0.89 0.05 0.78 0.06 0.70
K2DP 200240 24 0.11 0.91 0.14 0.73 — — 0.13 0.76
CDSSTR? 178-234 22 0.06; 0.99; 0.04 0.94 0.04 0.38 0.05 0.87

0.03; 0.62;

0.03 0.76°
SOMCD 190240 39 0.07 0.95 0.08 0.92 0.04 0.75 0.06 0.94

'H, a-helix; E, B-sheet; T, B-turn; O, other amides not classified as belonging to any of the previous categories.

aLinear regression.

’Data taken from Andrade et al.'®

“Data taken from Sreerama and Woody.*!
dData taken from Johnson.®

°For this method, rms deviations and correlation coefficients are shown for a-helix, 3;,-helix, and poly(L-proline) II type 3;-helix, respectively.
The root-mean-square deviation (RMSD) (8) and Pearson correlation coefficient r were calculated using equations:

5= \/% > (xi—y0)? )

1
Exiyi_ﬁzxizyz

and

Yat-—y

(8)

=)

APEE

where x; and y; are the experimental and calculated values, respectively, and n is the number of samples studied. r varies between —1 and 1,
where an r of 1 indicates perfect correlation, —1 indicates anti-correlation, and 0 indicates no correlation at all.

Number of proteins

0 0.05 0.1 0.15 0.2
Fraction S-turn

0.25 0.3
Fig. 4. Histogram plot of B-turn values.

Because of the self-organizing and cooperative feature of
the map, anomalous spectra (i.e., spectra much affected by
aromatic side chains etc.) are excluded or mapped to the
borders of the map. One example of this is concanavalin A
(Con A), labeled cna in Figure 1. It was pointed out by

Andrade et al.'® that this protein has many aromatic side
chains, and that structure estimation was bad. Even if
estimation in this work has improved, the spectrum of Con
A is still mapped to the border of the map, as there are no
similar spectra in the training set. Provided that the
number of anomalous spectra is not excessive, the algo-
rithm itself is able to filter out these bad examples and
even take advantage of them, using them as anchors to the
corners of the maps.

After optimal parameters have been found, it is only
necessary to train the network once. Thus, the same
structure maps can be used for structure estimation of a
protein, while in the previous version, the average results
over several maps were used. Mapping of a test spectrum
is instantaneous; consequently, structure information is
rapidly provided.

The overall performance of the method has improved as
compared with K2D. This could be attributed to the
increase in training set size. More training spectra means
the algorithm has more information to interpolate, improv-
ing the continuity in the network, and giving more accu-
rate structure maps. The wavelength range of the spectra
used is also bigger, which allows for a better discrimina-
tion among the secondary structures. Moreover, an addi-
tional secondary structure, B-turn, is evaluated, which
constrains the freedom of the remaining structure values.
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Another thing that has improved performance is the fact
that network size and parameters have been chosen based
on examination of network distortion and the clusters,
which was not done with K2D.

A web-based version of SOMCD has been prepared,
where users can submit their CD spectra and receive
instantaneous secondary structure information about the
protein. (The server runs on a perl script, and can be found
at URL:http://somcd.geneura.org.)

Future work on the algorithm will procede along the
following lines. Systematic parameter setting, that is, a
methodology designed to find the best values for the map
size and learning parameters, will be in effect by utilizing
global optimization algorithms such as simulated anneal-
ing or genetic algorithms. New results can be obtained
immediately when new proteins can be included into the
training set. In order to do that, a systematic “harvesting”
effort will be done from the method web page.
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