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Abstract: Proficient crop production is needed to ensure the feeding of a growing global population.
The association of bacteria with plants plays an important role in the health state of the plants
contributing to the increase of agricultural production. Endophytic bacteria are ubiquitous in most
plant species providing, in most cases, plant promotion properties. However, the knowledge on the
genetic determinants involved in the colonization of plants by endophytic bacteria is still poorly
understood. In this work we have used a genetic approach based on the construction of fliM, pilX
and eps knockout mutants to show that the motility mediated by a functional flagellum and the pili
type IV, and the adhesion modulated by exopolysaccarides are required for the efficient colonization
of rice roots by the endophyte Azoarcus sp. CIB. Moreover, we have demonstrated that expression of
an exogenous diguanylate cyclase or phophodiesterase, which causes either an increase or decrease
of the intracellular levels of the second messenger cyclic di-GMP (c-di-GMP), respectively, leads
to a reduction of the ability of Azoarcus sp. CIB to colonize rice plants. Here we present results
demonstrating the unprecedented role of the universal second messenger cyclic-di-GMP in plant
colonization by an endophytic bacterium, Azoarcus sp. CIB. These studies pave the way to further
strategies to modulate the interaction of endophytes with their target plant hosts.

Keywords: flagella; pili type IV; c-di-GMP; Azoarcus; endophyte; plant bacteria interaction

1. Introduction

Plant associated bacteria play a fundamental role in the healthy state of the plant
by contributing to its nutrition, development and defense [1–3]. A good number of the
plant-associated bacteria colonize the plant tissues as endophytes being the roots the major
target for endophytic colonization [2]. The endophytes are microorganisms that spend most
of their life cycle inside plant tissues without causing symptoms of plant damage [4], but
some endophytes are able to live outside of the plant without losing the capacity to colonize
seedlings [5]. In addition, some endophytic bacteria exhibit beneficial effects on the host
plant, such as plant growth promotion, the induction of increased resistance to pathogens,
as well as the supply of fixed nitrogen to the host plant [6]. The effective root colonization
by endophytic bacteria involves the coordinated expression of a number of gene factors,
many of which are still poorly understood [7–10]. To analyze the genes involved in
plant colonization several genomes from endophytic bacteria were compared [2,11–14].
Moreover, to establish the determinants that differentiate endophytes from non-endophytic
bacteria able to interact with plants, genomes from endophytic bacteria were compared
with those from bacterial plant pathogens, bacteria that colonize the rhizosphere and
bacteria from the rhizobia group [12]. Some properties such as motility, chemotaxis and
adherence were considered crucial for initiating endophytic colonization. Bacterial motility
plays an important role in plant colonization. Since endophytes are attracted to the root by
plant exudates [2], most of them have flagella [14]. Chemotaxis towards the plant varies
greatly between the different species of endophytes according to the rank of their preferred
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host [11]. For example, while in Gluconacetobacter diazotrophicus only 12 genes related to
transmembrane receptors, and two-component response regulators are involved in the
signal transduction for chemotaxis, the genome of Azoarcus sp. BH72 has 51 such genes, a
number similar to that of Burkholderia phytofirmans PsJN [14].

The flagellum is considered one of the first bacterial factors that come into contact
with the plant, activating the induced systemic resistance [15]. It has been reported that the
Azoarcus sp. BH72 flagellum has an active role during the effective endophytic colonization
of rice roots [16]. Once the bacteria contacted with plant roots, adherence and motility of the
twitching type mediated by the pili type IV becomes especially important [11,17]. Thus, the
presence of functional pili seems to be also essential for the colonization of rice by Azoarcus
sp. BH72 [7,18]. After the adhesion of the bacteria to the roots microcolonies are formed
involving the essential participation of exopolysaccharides and lipopolysaccharides [19–21],
as it has been reported in the colonization of rice roots by Herbaspirillum seropedicae [22] and
G. diazotrophicus [23]. In fact, bacterial exopolysaccharide is related with a multitude of vital
functions for the cell, supporting the cohesion and adhesion to biotic and abiotic surfaces
through cell aggregation and participating in biofilm formation [24]. In fact, some reports
have suggested the participation of exopolysaccharide in the establishment of symbiotic
and plant-bacterial interactions between rhizobia and legumes [25], and in the rhizosphere
interactions of some strains of P. fluorescens [26] or endophytes such G. diazotrophicus [23].

Cyclic di-GMP (c-di-GMP) is a second universal messenger in prokaryotes that con-
trols many bacterial processes such as the transition from a planktonic to a sessile state
favoring the establishment of biofilms and modulating bacterial virulence [27,28]. In fact,
it has been reported that the levels of c-di-GMP in bacteria control the synthesis of ex-
opolysaccharides, adhesins and the formation of biofilms [29–33], hence regulating, among
others, colony morphology [34,35], quorum sensing processes [36], cell motility [37–40],
nodulation [33,41] and virulence [42,43]. However, reports on the role of c-di-GMP in
plant-bacteria interactions are scare. The few available studies have mainly focused on the
regulation of virulence in plant pathogenic bacteria [44] such as Pseudomonas syringae [45,46],
P. savastanoi [45], Xanthomonas campestris [47–49] or X. oryzae [50,51], and in the study of
the interaction between plants and symbiotic bacteria [45,52]. The results obtained from
these studies show disparity. Increasing c-di-GMP levels by the overexpression of the
diguanylate cyclase (DGC) PleD in pathogenic strains P. syringae pv. tomato and P. syringae
pv. phaseolicola reduces the expression of the type III secretion system (associated with
pathogenesis) without affecting virulence. However, the overexpression of PleD in P. savas-
tanoi does not affect the expression of the secretion system but delays the appearance of
necrosis [45]. In general, high concentrations of cyclic di-GMP promote biofilm formation,
aggregation, attachment, and reduced motility of pathogens such as Vibrio cholerae [53],
Xanthomonas campestris pv. campestris [54] or Yersinia pestis [55]. In plant associated bacteria,
the study of how c-di-GMP levels affect interactions, for example between Rhizobium etli
and Phaseolus vulgaris or between R. leguminosarum and Vicia sativa, have shown that, in
both cases, high levels of c-di-GMP favor adhesion to the roots of the plant, associated with
a greater formation of biofilm, but negatively affect later stages, reducing nitrogen fixation
and, consequently, plant growth [45]. Nevertheless, and as far as we know, there are no
reports on the role of c-di-GMP in plant colonization by endophytes.

Azoarcus sp. CIB is a beta-proteobacterium, facultative anaerobic (denitrifying) strain
able to colonize rice roots as an endophyte [56] that display plant growth promoting
traits such as the ability to fix nitrogen, solubilize inorganic phosphate, produce the plant
growth hormone indoleacetic acid [56] and promote the rice plant growth under certain
environmental stress conditions [57]. Some genetic determinants likely involved in the
endophytic interaction, such as the presence of flagella and pili type IV, can be inferred from
the genome sequence of strain CIB [58]. In addition, strain CIB owns some other interesting
biotechnological properties such as the ability to degrade toxic aromatic compounds,
e.g., toluene/xylene, under aerobic and anaerobic conditions [59,60], and tolerate high
concentrations of certain metals and metalloids for their conversion into metal nanoparticles
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of industrial value [61,62]. All these features make strain CIB significantly different to the
typical Azoarcus endophytic strains, and more closely related to members of the new genus
Aromatoleum [63].

The aim of this work is to explore the role of the flagellum, pili type IV and exopolysac-
carides on the colonization of rice roots by Azoarcus sp. CIB. Since the second messenger
c-di-GMP is connected with motility and adhesion, in this work we investigated if the
levels of c-di-GMP also control the ability of the bacterium to colonize plant, an aspect
scarcely explored in endophytes.

2. Materials and Methods
2.1. Strains, Seeds and Plasmids Used

The bacterial strains and plasmids used in this work are listed in Table 1. Azoarcus sp.
strain CIB was deposited in the Spanish Type Culture Collection (CECT #5669). Seeds from
Oryza sativa L. GLEVA were kindly provided by Castells Seeds Co. (Tarragona, Spain).

Table 1. Bacterial strains and plasmids used in this study.

Strain or Plasmid Relevant Genotype and Characteristic(s) Reference or Source

E. coli strains

DH10B F’, mcrA, ∆(mrr hsdRMS-mcrBC), Φ80lacZ∆M15,∆lacX74, deoR, recA1, araD139, ∆(ara-leu)7697, galU,
galK, rpsL (Smr), endA1, nupG, Life Technologies

S17-1λpir Tpr Smr recA thi hsdRM+ RP4::2-Tc::Mu::Km, λpir phage lysogen [64]
CC118 ∆(ara-leu), araD, ∆lacX7, galE, galK, phoA20, rpoB, thi-1, rpsE, (Spr), (Rfr), argE, (Am), recA1 [65]

Azoarcus strains

CIB Wild type strain [59]
CIBdpilX KmR, CIB mutant by insertion in the pilX gene This work
CIBdfliM KmR, CIB mutant by insertion in the fliM gene This work
CIBdepsF KmR, CIB mutant by insertion in the epsF gene This work

Plasmids

pSEVA237 Kmr, ori pBBR1, harbors the gfp gene under the control of the PlexA promoter [66]

pIZ1016 Gmr, ori pBBR1MCS-5 derivative vector for cloning and expression harboring the Ptac promoter
and the lacI gene [67]

pIZ2133 GmR, pIZ1016 derivative containing the gene PA2133 from P. aeruginosa PAO1 under the control of
the Ptac promoter

[68]

pIZ4959 GmR, pIZ1016 derivative containing the gene PP4959 from P. putida KT2440 under the control of
the Ptac promoter

[68]

pK18mob KmR, oriColE1, Mob+, lacZα, suicide vector for the construction of insertion mutants by
homologous recombination

[69]

pK18mobpilX KmR, pK18mob derivative that includes a 455 bp pilX HindIII/BamHI internal fragment This work
pK18mobfliM KmR, pK18mob derivative that includes a 512 bp fliM HindIII/BamHI internal fragment This work
pK18mobepsF KmR, pK18mob derivative that includes a 635 bp epsF HindIII/BamHI internal fragment This work

Kmr: kanamycin resistant; Gmr: gentamicin resistant; Smr: streptomycin resistant.

2.2. Bacterial Growth Conditions

Azoarcus strains were grown on MC medium (MA basal medium plus trace elements
and vitamins). MA basal medium is detailed in Table 2 [59]. As carbon source, 0.2% (w/v)
pyruvate was added. When needed, bacterial strains were also grown on a variant of the
VM-ethanol rich medium [70] with the composition detailed in Table 2. E. coli strains were
grown in lysogeny broth (LB) medium [71] at 37 ◦C. When required, kanamycin (Km) or
gentamicin (Gm) was added at 50 µg mL−1 or 10 µg mL−1, respectively. The growth of the
cultures was monitored by measuring the absorbance at 600 nm (A600) using a Shimadzu
UV-260 spectrophotometer or by counting viable cells. Cell morphology was analyzed
with a Nikon OPTIPHOT-2 phase contrast microscope.
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Table 2. Composition of growth media used in this study.

Medium Quantity per Litre of Distillated Water

MA (pH 7.5)
KH2PO4 0.33 g

Na2HPO4 1.20 g
NH4Cl 0.11 g

MgSO4 × 7H2O 0.10 g
CaCl2 0.04 g

Trace elements (stock solution 100×) (pH 6.5)

Nitrilotriacetic acid 1.50 g
MgSO4 × 7H2O 3.00 g
MnSO4 × 2H2O 0.50 g

NaCl 1.00 g
FeSO4 × 7H2O 0.10 g
CoSO4 × 7H2O 0.18 g
CaCl2 × 2H2O 0.10 g
ZnSO4 × 7H2O 0.18 g
CuSO4 × 5H2O 0.01 g

KAl(SO4)2 × 12H2O 0.02 g
H3BO3 0.01 g

Na2MoO × 2H2O 0.01 g
NiCl2 × 6H2O 0.025 g

Na2ScO3 × 5H2O 0.30 mg

Vitamin solution (stock 1000×)

Biotin 20 mg
Folic acid 20 mg

Pyridoxine-HCl 10 mg
Thiamine-HCl × 2H2O 50 mg

Riboflavin 50 mg
Nicotinic acid 50 mg

Calcium D-pantothenic acid 50 mg
Vitamin B12 50 mg

p-aminobenzoic acid 50 mg

Modified VM-ethanol rich medium (pH 6.8)

KH2PO4 0.40 g
K2HPO4 0.60 g

NaCl 1.10 g
NH4Cl 0.50 g

MgSO4 × 7H2O 0.20 g
CaCl2 26 mg

MnSO4 10 mg
Na2MoO4 2 mg

Fe(III)-EDTA 66 mg
Yeast extract 1.00 g

Bactopeptone 3.00 g
Ethanol 6.00 mL

2.3. Molecular Biology Techniques

Standard molecular biology techniques were performed as previously described [72].
DNA fragments were purified with Gene-Turbo (BIO101 Systems). Plasmids and PCR
products were purified with a High Pure Plasmid and PCR Product Purifications kits
(Roche), respectively. Oligonucleotides were supplied by Sigma Co and they are detailed in
Supplementary Materials Table S2. All cloned inserts and DNA fragments were confirmed
by DNA sequencing with fluorescently labeled dideoxynucleotide terminators [73] and
AmpliTaq FS DNA polymerase (Applied Biosystems) in an ABI Prism 377 automated
DNA sequencer (Applied Biosystems, Foster City, CA, USA). Transformations of E. coli
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were carried out by using the RbCl method or by electroporation (Gene Pulser, Bio-Rad,
Hercules, CA, USA) [72]. Transformation of Azoarcus sp. CIB was done by biparental
conjugation using the strain E. coli S17-1λpir as donor, following a protocol previously
established [64] with slight modifications: donor cells were grown to A600 of 5 and the
receptor CIB strain was grown on MC medium supplemented with pyruvate 0.2%, and
concentrated to reach an A600 of 35. The transconjugants were selected on MC medium
supplemented with 10 mM glutarate plus the corresponding antibiotic.

2.4. Construction of Azoarcus sp. CIBdpilX, Azoarcus sp. CIBdfliM and Azoarcus sp. CIBdepsF
Mutant Strains

For insertional disruption of pilX, fliM and epsF genes in the genome of Azoarcus
sp. CIB we used single homologous recombination, that usually generates polar effects
downstream of the the mutated gene, with PCR-amplified DNA fragments obtained with
the primer pairs 5′pilX/3′pilX; 5′fliM/3′fliM and 5′epsF/3′epsF, respectively (Table S2).
The obtained fragments were double-digested with the appropriate restriction enzymes,
generating the pK18mobpilX, pK18mobfliM and pK18mobepsF recombinant plasmids
(Table 1). These plasmids were transferred from E. coli S17-1λpir (donor strain) to Azoar-
cus sp. CIB (recipient strain) by biparental filter mating [72], and exconjugants strains
Azoarcus sp. CIBdpilX, Azoarcus sp. CIBdfliM and Azoarcus sp. CIBdepsF were isolated on
kanamycin-containing MC agar plates harboring 10 mM glutarate as the sole carbon source
for counterselection of donor cells. The mutant strains were verified by PCR amplification
using a standard oligonucleotide (F24 or R24) flanking the multiple cloning site of the
plasmid and a second specific oligonucleotide external to the fragment used to perform
the homologous recombination (Table S2). RT-PCRs were used to ensure that the mutated
genes were not expressed in their corresponding host mutant strains (Figure S1).

2.5. RNA Extraction and Quantitative Reverse Transcription-PCR (qRT-PCR) Experiments

RNA was purified from bacterial cells grown up to the middle of the exponential
phase and resuspended in a solution containing TE buffer (Tris-HCl 10 mM pH 8.0, EDTA
1 mM) and lysozyme 50 mg mL−1 (Sigma). Total RNA was obtained using High Pure RNA
Isolation Kit (Roche). The DNA was removed with DNAse and Removal Treatment Kit
(Ambion). The concentration and purity of RNA was spectrophotometrically determined
at A260 and calculating the A260/A280 ratio, respectively. The cDNA was obtained by
using the Transcriptor First Strand cDNA Synthesis kit (Roche). Each RT reaction (20 µL)
contained 1 µg RNA, 10 U reverse transcriptase, RNAse inhibitor 20 U, dNTPS 1 mM
and 60 µM random hexamer primers. The standard procedure of cDNA production
includes a 10 min incubation at 25 ◦C followed by 1 cycle of 30 min at 55 ◦C and another
incubation of 5 min at 85 ◦C using the Mastercycler Gradient equipment (Eppendorf).
Then, 1 µL of the obtained cDNA was used as template for the PCR. The analysis was
performed in three technical replicates from three biological samples. Reactions (20 µL)
contained 1 µL of cDNA, 0.25 µM of each of the three target-specific primers, and 10 µL of
SYBR Green I Master Mix (Roche). Oligonucleotides 5′RTpilY1 and 3′RTpilY1 (Table S2)
were used to amplify transcripts from the pilY1 gene. Oligonucleotides 5′RTfliC and
3′RTfliC (Table S2) were used to amplify transcripts from the fliC gene. Oligonucleotides
5′RTepsF and 3′RTepsF (Table S2) were used to amplify transcripts from the epsF gene.
Oligonucleotides 5′POLIIIHK and 3′POLIIIHK (Table S2) were used to amplify transcripts
from the dnaE gene (αDNApol III subunit gene) used as an internal control to normalize
the sample data as reported before [74]. PCR amplifications were carried out with one
denaturation cycle (95 ◦C for 5 min), followed by 30 cycles of amplification (95 ◦C for 10 s,
60 ◦C for 10 s, and 72 ◦C for 10 s). After amplification, 7 melting curves were generated to
confirm amplification of a single product. For relative quantification of the fluorescence
values, a calibration curve was constructed by seven-fold serial dilutions of Azoarcus sp.
CIB genomic DNA sample ranging from 1 ng to 0.5 × 10−7 ng. This curve was then used
as a reference standard for extrapolating the relative abundance of the cDNA target within
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the linear range of the curve. The results are shown as relative quantification using the
∆∆Ct method [75]

2.6. Inoculation of Rice Seedlings with Bacteria

Dehulled rice seeds (O. sativa L. GLEVA) were surface sterilized by shaking them at
25 ◦C for 30 min in 30 mL 1% (v/v) sodium hypochlorite. After rinsing them three times for
10 min in sterile water, the seeds were incubated in VM-ethanol for 48 h. The germ-free
seedlings were selected for inoculation. The germination of the seeds continued on humidi-
fied filter papers for 24 h prior to inoculation with bacterial cells. Bacteria were obtained as
described previously [56]. After growth up to mid-exponential phase, bacterial cells were
collected by centrifugation, washed with sterile 0.9% NaCl (w/v) solution, resuspended in
1 mL of sterile distilled water, and the cell suspension was inoculated onto the surface of
each seedling in aseptic conditions. After inoculation, the seedlings were grown at 25 ◦C
under natural daylight conditions (10 h of light and 14 h of darkness) for 5–10 days.

2.7. Recovery and Quantification of Endophytes

Rice seedlings were collected 5 days after inoculation with bacterial strains. The roots
were weighed, proceeding to its surface disinfection by immersion for 3 min in a 1% (v/v)
solution of sodium hypochlorite and three washes with sterile water. The roots were then
homogenized by adding 1 mL of saline (0.85% NaCl) solution to a Potter-Elvehjem [76].
Once the extract was obtained, serial dilutions were made and plated in VM medium plates
(1.5% agar) supplemented with kanamycin in order to determine the number of Colony
Forming Units (CFUs). Each experiment was performed by triplicate (n = 3) and the total
number of roots collected for each replica was 20.

2.8. Motility Tests

Swimming-type motility assays were performed on semi-solid VM-agar 0.3% medium
plates using cultures grown in VM-ethanol liquid medium up to an A600 of 0.6. For
swarming motility assays, plates of MC medium with 0.2% pyruvate (w/v) and semi-solid
0.4% agar were used employing cultures grown in liquid MC medium with 0.2% pyruvate
(w/v) up to an A600 of 0.6. The plates were incubated for 7 days at 30 ◦C and the diameter
of the growth halos of the different Azoarcus sp. CIB strains was measured.

2.9. Colony Morphology

The morphological study of the colonies of Azoarcus sp. CIB strains was performed on
VM medium plates supplemented with 0.5 g L−1 of Congo Red dye (Sigma-Aldrich, San
Louis, MO, USA). The bacteria were grown in VM-ethanol liquid medium up to an A600 of
0.6. Subsequently, serial dilutions were made in saline solution (0.85% NaCl) and plated on
VM-Congo Red plates. The plates were incubated for 7 days at 30 ◦C and the morphology
of isolated colonies was analyzed with a Leica MZ16FA stereomicroscope.

2.10. Sequence Data Analyses

Nucleotide sequence analyses were done at the National Center for Biotechnology
Information (NCBI) server (https://www.ncbi.nlm.nih.gov/, accessed on 7 March 2021).

2.11. Statistical Analysis

The data were analyzed with the GraphPad software package (San Diego, CA, USA)
using paired or unpaired t-test. Statistical differences were presented as p < 0.01 (**) or
p < 0.05 (*).

https://www.ncbi.nlm.nih.gov/
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3. Results and Discussion
3.1. A Functional Flagellum and Pili Type IV Are Required for Rice Colonization of Azoarcus
sp. CIB

As mentioned in the Introduction, bacterial motility plays an important role in plant
colonization. The flagellum has traditionally been regarded as the main responsible for
bacterial motility. Three gene clusters predicted to control the synthesis and regulation of
the flagellum have been identified at three different positions of the genome of Azoarcus
sp. CIB ([58], Table S1). We then checked whether a mutation that abolish flagellum
functionality may have an effect on the endophytic colonization of rice by strain CIB.

To try to generate a motility minus phenotype in Azoarcus sp. CIB, we constructed
a mutant strain in the fli operon. The Azoarcus sp. CIBdfliM strain (Table 1) harbors a
disruptional insertion of the fliM (AzCIB_0962) gene, encoding the FliM protein of the C
ring which has been shown to be directly involved in flagellum movement and the flagellar
export apparatus [77–80]. To check whether the fliM mutant strain showed an altered
motility phenotype, we performed bacterial swimming assays. As shown in Figure 1A,
the movement of the mutant cells was significantly diminished (around 50%) with respect
to that of the parental strain, hence suggesting an important loss of functionality of the
flagellum in Azoarcus sp. CIBdfliM strain.
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Figure 1. Swimming and rice colonization phenotypes of the Azoarcus sp. CIB and Azoarcus sp. CIBdfliM strains. (A) Swim-
ming motility of the Azoarcus sp. CIB (carrying the control plasmid pSEVA237) and Azoarcus sp. CIBdfliM strains, and
quantification of the diameter of the halos (n = 3); the error bars indicate the standard deviation. Two asterisks mean a very
significant difference (p = 0.0076), according to paired t-test. (B) Quantification of the number of endophytes recovered from
rice roots after inoculation with Azoarcus sp. CIB (pSEVA237) and Azoarcus sp. CIBdfliM strains. Graph shows the CFU
values per gram of root (fresh weight) from three independent experiments ± standard deviation. An asterisk means a
significant difference (p = 0.0319), according to paired t-test.

We then checked the ability of the mutant strain to colonize rice seedlings. Interestingly,
the number of endophytes recovered after inoculation of rice seedlings with Azoarcus sp.
CIBdfliM strain was around an order of magnitude lower (3.4 × 103 per g of roots) than
those recovered from seedlings inoculated with the wild type CIB strain (4.5 × 104 per g of
roots) (Figure 1B). These results indicate an important role of the flagellum at some stage
of the endophytic colonization of rice by Azoarcus sp. CIB. These results are in agreement
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with previous reports showing that deletion of the fliC3 gene, encoding the main flagellin
(FliC) of the flagellum, in the endophyte Azoarcus sp. BH72 strain leads to a significant
decrease of around 80% in the plant colonizing capacity on competition assays between
the wild type and the mutant strain [16], hence supporting that the flagellum is involved in
the Azoarcus-plant interaction.

Different studies conducted on Azoarcus spp. strains have concluded that pili type IV
are needed for plant colonization since they are responsible of adhesion and movement
to the plant roots [7,16,18,81]. The genes predicted to be responsible for the synthesis
of pili type IV in Azoarcus sp. CIB are organized in several gene clusters distributed
along the genome ([58], Table S1). In order to analyze if the pil genes from Azoarcus
sp. CIB are involved in the colonization of rice root, we constructed an Azoarcus sp.
CIBdpilX mutant strain containing a disruption of the pilX gene (AzCIB_3117) (Table 1).
The motility (swarming pattern) of the pilX mutant strain was reduced by 40% compared
to that observed with the wild-type strain (Figure 2A), which is in agreement with the
already observed lower motility in pil mutant bacterial strains [82,83] and confirms that
the pil genes indeed encode proteins that participate in the motility apparatus in Azoarcus
sp. CIB.
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Figure 2. Motility and rice colonization phenotypes of the Azoarcus sp. CIB and Azoarcus sp. CIBdpilX strains. (A) Swarming
motility of Azoarcus sp. CIB (carrying the control plasmid pSEVA237) (left) and Azoarcus sp. CIBdpilX (right), and
quantification of the diameter of the halos (n = 3); the error bars indicate the standard deviation. An asterisk means a
significant difference (p = 0.0377), according to paired t-test. (B) Quantification of the number of endophytes recovered
from rice roots after inoculation of rice seedlings with the Azoarcus sp. CIB (pSEVA237) and Azoarcus sp. CIBdpilX. The
graph shows the CFU values per gram of root (fresh weight) of three independent experiments; error bars indicate standard
deviation. An asterisk means a significant difference (p = 0.0219), according to paired t-test.

Interestingly, the plant colonization ability of the Azoarcus sp. CIBdpilX strain was
more than one order of magnitude lower than that of the parental CIB strain (Figure 2B).
Therefore, these results allowed us to conclude that pili type IV are involved in the inter-
action of the CIB strain with rice. Our results in strain CIB are in agreement with those
reported in Azoarcus sp. BH72 where a deletion of pilX did not inhibit the synthesis of
the pili but affected its functionality [81–85] and decreased by 80% the plant colonizing
capacity of the mutant strain [7,18].

In summary, all these results taken together indicate that both, flagellum and pili type
IV are needed for the interaction of Azoarcus sp. CIB with rice.
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3.2. Role of the Genes Involved in Exopolysaccharide Modification in the Interaction between
Azoarcus sp. CIB and Rice

As mentioned in the Introduction, exopolysaccharides have an important role in plant-
bacteria interactions [23,25,26]. In the genome of Azoarcus sp. CIB we have identified three
gene clusters putatively involved in the synthesis and modification of exopolysaccharides
([56], Table S1). Previous results have shown that the gene cluster AzCIB_0813-0833 was
strongly induced at the transcriptional level in the presence of rice extracts [57]. To analyze
the potential role of this gene cluster in the colonization of rice roots by the CIB strain,
it was inactivated by insertional disruption at the AzCIB_0818 (epsF) gene. The surface
of the colonies of the Azoarcus sp. CIBdepsF mutant strain grown on a solid culture
medium supplemented with Congo Red dye [86] showed a rugose phenotype in contrast
to the smooth phenotype shown by colonies of the wild-type strain (Figure 3A). These
changes in colony morphology strongly suggest the existence of significant alterations in
the exopolysaccharide of the epsF mutant strain [87], hence indicating that the eps genes are
indeed involved in exopolysaccharide synthesis/modification. The next step was to study
the ability of the strain Azoarcus sp. CIBdepsF to colonize rice roots as an endophyte. The
plant colonization results showed that the number of Azoarcus sp. CIBdepsF endophytes
recovered from rice roots (1.65 × 104 bacteria per g of roots) was 36% lower than that
obtained from roots inoculated with the parental strain Azoarcus sp. CIB (4.57× 104 bacteria
per g of roots) (Figure 3B). Therefore, the results obtained reveal that the inactivation of the
eps cluster reduces the ability of Azoarcus sp. CIB to interact with the rice plant. These results
provide strong experimental support on the role of the exopolysaccharide(s) promoting the
endophytic lifestyle in members of the Azoarcus/Aromatoleum group.
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Figure 3. Colony morphology and rice colonization capacity of the Azoarcus sp. CIB and Azoarcus sp. CIBdepsF strains.
(A) Morphology of the colonies of Azoarcus sp. CIB (pSEVA237) and Azoarcus sp. CIBdepsF strain grown in VM solid
medium supplemented with Congo red (0.5 g L−1). The colonies were visualized with a Leica MZ16FA stereomicroscope.
(B) Quantification of the number of endophytes recovered from rice roots after inoculation with Azoarcus sp. CIB (pSEVA237)
and Azoarcus sp. CIBdepsF strains. Graph shows the CFU values per gram of root (fresh weight) of three independent
experiments ± standard deviation. An asterisk means a significant difference (p = 0.0375), according to paired t-test.

3.3. c-di-GMP Levels Influence the Endophytic Lifestyle of Azoarcus sp. CIB

As mentioned in the Introduction, c-di-GMP is a second messenger involved in the
regulation of many bacterial functions. However, its role in beneficial plant-bacteria
interactions and, more specifically, in their endophytic relationships, is poorly studied and
far to be understood. Since the production and/or functionality of pili type IV, flagellum
and exopolysaccharide (all of which were shown above to be involved in the Azoarcus
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sp. CIB-rice interactions) have been related with the intracellular levels of c-di-GMP in
bacteria [88–90], it was tempting to speculate that c-di-GMP could be also regulating the
endophytic lifestyle of strain CIB. To study further the proposed new function of c-di-GMP
in bacterial endophytes, we checked recombinant Azoarcus sp. CIB strains containing
different intracellular levels of c-di-GMP. To this end, we used Azoarcus sp. CIB (pIZ2133),
expressing the PA2133 c-di-GMP phosphodiesterase from P. aeruginosa PAO1 [26], and
Azoarcus sp. CIB (pIZ4959), expressing the PP4959 diguanilate cyclase from P. putida
KT2440 [91], two strains described for their reduced or increased levels of c-di-GMP,
respectively, with respect to those of the parental strain Azoarcus sp. CIB (pIZ1016) ([68],
Table 1). To confirm that the two recombinant strains showed the phenotypes anticipated
according to the variations in c-di-GMP levels [28], we analyzed first their swarming and
swimming motility. As expected, whereas Azoarcus sp. CIB (pIZ2133) (reduced c-di-GMP
levels) showed an increased swarming and swimming motility, the strain Azoarcus sp. CIB
(pIZ4959) (increased c-di-GMP levels) showed a reduced swarming and swimming motility
with respect to that of the control strain (Figure 4). The growth rates of the CIB control
strain and its derivative strains CIB (pIZ2133) and CIB (pIZ4959) were similar (data not
shown), so the observed different motility cannot be attributed to differences in their cell
growth. The morphology of the colonies was later analyzed and whereas Azoarcus sp. CIB
(pIZ2133) generated smoother and more plain colonies than the control strain, Azoarcus
sp. CIB (pIZ4959) showed rough colonies (Figure 4), which is consistent with a higher
exopolysaccharide synthesis [28].
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Figure 4. Motility and morphology of the colonies of Azoarcus sp. CIB strains expressing genes
involved in the metabolism of c-di-GMP. The plates were inoculated with Azoarcus sp. CIB (pIZ1016)
(empty plasmid), Azoarcus sp. CIB (pIZ2133) (expressing the PA2133 phosphodiesterase) and Azoarcus
sp. CIB (pIZ4959) (expressing the PP4959 diguanylate cyclase).

To analyze whether the altered levels of c-di-GMP in Azoarcus sp. CIB (pIZ2133)
and Azoarcus sp. CIB (pIZ4959) strains might influence their plant colonization abilities,
rice seedlings colonization tests were performed. As shown in Figure 5, the number of
endophytes recovered from seedlings inoculated with Azoarcus sp. CIB (pIZ2133) cells
(1.46 × 103 bacteria per g of root), was more than one order of magnitude lower than the
number of endophytes recovered after inoculation with the CIB control strain (2.5 × 104

bacteria per g of root). On the other hand, inoculation with the strain Azoarcus sp. CIB
(pIZ4959) led to 7.63 × 103 endophytes per g of root, which represents a loss of efficiency
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in colonization of 70% with respect to the control strain. Therefore, these data suggest
that either the artificial decrease or increase of c-di-GMP levels in Azoarcus sp. CIB affect
negatively the endophytic colonization of rice by this bacterium. These results are in
agreement with previous observations that any modification in the homeostasis of c-di-
GMP negatively affects the interactions between the plant and pathogenic or symbiont
bacteria [41–43]. These results can be explained by taken into account that both motility and
adhesion are needed for successful plant colonization [2]. Thus, an increase in c-di-GMP
levels leads to greater adhesion but, at the same time, to a decrease in bacterial motility;
conversely, a decrease of c-di-GMP levels enhance bacterial motility but are detrimental
for adhesion and formation of microcolonies needed for the entrance of the bacteria to the
internal tissues of the plant [2,92].
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Figure 5. Rice roots colonization by Azoarcus sp. CIB strains producing different levels of c-di-GMP.
Rice seedlings were inoculated with Azoarcus sp. CIB (pIZ1016) (empty plasmid), Azoarcus sp. CIB
(pIZ2133) (expressing the PA2133 phosphodiesterase) and Azoarcus sp. CIB (pIZ4959) (expressing the
PP4959 diguanylate cyclase). Plants were grown at 25 ◦C for 5 days and bacteria present inside the
roots were determined as described in Methods. The graph shows the CFU values per gram of root
(fresh weight) of three independent experiments; error bars represent the standard deviation. Values
of Azoarcus sp. CIB (pIZ1016) versus Azoarcus sp. CIB (pIZ2133) (p = 0.0142) and Azoarcus sp. CIB
(pIZ4959) (p = 0.0154) were significantly different from each other and are indicated with one asterisk
(paired t-test analysis).

To try to determine if the presumed modification of c-di-GMP levels in Azoarcus sp. CIB
affected the transcription of genes involved in bacterial motility and/or exopolysaccharide
formation, an expression analysis of the pilY1 gene (encodes a protein for the synthesis
and stabilization of pili type IV), fliC gene (encodes a structural protein of the flagellum)
and the epsF gene (encodes a protein for exopolysaccharide modification) was performed.
The results obtained revealed that the expression of the epsF gene was not significantly
altered in any of the two strains that have modified levels of c-di-GMP, i.e., Azoarcus sp. CIB
(pIZ2133) and Azoarcus sp. CIB (pIZ4959) (Figure 6). These results suggest that c-di-GMP
does not control the exopolysaccharide genes at the transcriptional level, pointing to a
post-transcriptional control, as already described for exopolysaccharide genes in other
bacteria [93], as a more likely regulatory mechanism. Similarly, the expression of the
pilY1 and fliC genes was not significantly altered in Azoarcus sp. CIB (pIZ2133) (reduced
c-di-GMP levels) when compared with their expression in the control strain (Figure 6),
suggesting that the increased motility observed in the former strain might be controlled by
a c-di-GMP dependent post-transcriptional regulation as already shown in P. aeruginosa
PAO1 [94]. In contrast, the expression of pilY1 and fliC genes was 3–3.5 times lower in
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the strain Azoarcus sp. CIB (pIZ4959) than in the control strain (Figure 6), suggesting
that the increase of c-di-GMP levels leads to a transcriptional repression of such genes.
The repression of the pil and fli genes in response to elevated cellular levels of c-di-GMP
was previously observed in other bacteria such as V. cholerae [95,96], and is in agreement
with the reduced motility observed in swarming and swimming assays (Figure 4). It is
known that the c-di-GMP mediated transcriptional regulation of motility genes takes place
through the FleQ regulator in P. aeruginosa and P. putida [37,97,98], or through alterations
in chemotactic machinery affecting receptors with PilZ domains [99,100]. Since Azoarcus
sp. CIB does not have a FleQ ortholog and only a protein with a putative PilZ domain has
been identified by genome search, it is currently difficult to predict the signaling cascade
involved in the transcriptional control mediated by c-di-GMP on the pil and fli genes in the
CIB strain.
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levels of c-di-GMP. The transcript levels of the pilY1, fliC and epsF genes in the Azoarcus sp. CIB
(pIZ2133) (red columns) and Azoarcus sp. CIB (pIZ4959) (yellow columns) strains grown in VM-
ethanol medium for 24 h, were determined by quantitative RT-PCR using dnaE gene as internal
control, as detailed in Methods. The expression of the genes in each strain is shown relative to
their expression in the control strain Azoarcus sp. CIB (pIZ1016). The mean value and the standard
deviation corresponding to the results of three independent experiments are indicated. Values of
expression of pilY gene (p = 0.0174) in Azoarcus sp. CIB (pIZ2133) and Azoarcus sp. CIB (pIZ4959),
were significantly different (p = 0.0174; one asterisk). Values of expression of fliC gene in Azoarcus
sp. CIB (pIZ2133) and Azoarcus sp. CIB (pIZ4959), were very significantly different (p = 0.0095; two
asterisks). Values of expression of epsF gene in Azoarcus sp. CIB (pIZ2133) and Azoarcus sp. CIB
(pIZ4959) were not significantly different (p = 0.0516). All the statistic data were obtained according
to unpaired t-test.

In summary, all the results presented here suggested for the first time how the modi-
fication of intracellular levels of c-di-GMP in an endophytic bacterium affects its ability
to colonize the host plant, and they reveal an unnoticed role of c-di-GMP in bacteria
controlling the endophytic lifestyle. It is tempting to speculate that, as described in the
endophyte bacterium Azoarcus sp. CIB, the modification of c-di-GMP levels may modulate
pathogenesis of plant pathogenic bacteria. In this sense, there have been described some
examples where changes in the levels of c-di-GMP control pathogenesis, e.g., modulating
flagellar swimming motility and plant disease progression in Erwinia amylovora [101] or
Pseudomonas syringae pv. tomato DC3000 [102]. However, these findings could not be
generalized to all pathogenic bacteria. Thus, increasing c-di-GMP levels in P. savastanoi pv.
savastanoi might reduce the necrosis observed on tomato or bean but the development of
other disease symptoms did not seem significantly affected by high c-di-GMP [45]. More
work needs to be done to elucidate the signaling cascade that responds to the levels of
c-di-GMP in Azoarcus sp. CIB.
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4. Conclusions

The results of the present study describe the participation of the motility mediated
by the flagellum and pili type IV, the adhesion modulated by exopolysaccharides and,
remarkably, the unnoticed participation of the intracellular levels of c-di-GMP in the
colonization of rice roots by Azoarcus sp. CIB. More experiments need to be developed to
understand the complete landscape of molecular determinants involved in the signaling
cascade that responds to the levels of c-di-GMP in Azoarcus sp. The results of these
experiments might be used to set strategies to modulate the interaction of endophytes with
their target plant hosts.
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Oligonucleotides used in this study.
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