

Supplementary Material

Weissella cibaria riboflavin-overproducing and dextran-producing strains useful for the development of functional bread

Annel M. Hernández-Alcántara¹, Rosana Chiva², Maria Luz Mohedano¹, Pasquale Russo³, José Angel Ruiz-Maso¹, Gloria del Solar¹, Giuseppe Spano³, Mercedes Tamame², Paloma López^{1*}

¹ Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain

² Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarias González 2, 37007 Salamanca, Spain

³ Department of Agriculture Food Natural Science Engineering, University of Foggia, , via Napoli 25, 71122 Foggia, Italy

Supplementary Table S1. Description and location of oligonucleotides used for DNA amplification and sequencing of *rib* operon and *dsr* genes

Amplification and sequencing of the <i>rib</i> operon						
Amplicon size (bp)	Primers for amplification (5'-3') Length (nt)	Primers for sequencing (5'-3') Length (nt)				
4045 bp	For1: TGGCCTTGCGTGATATTTCG 20 Rev1: AGCATTGTACATCCCCTCAAA 21	For2: TTTTGGCCCCTTTACGCAG19For3: TATCAAGCCGCGCAACAAG19For4: TCCCAATCACACACCAACAAC21For5: CTAGTGCGACGGCGTTTGTGATT23Rev2: GTGGAATTTCAAATGCGCCG20Rev3: CTTCAATACCGTGCTTGGCT19Rev4: TTCACGTGCCATCCGACCATC21				
Primer walking hybridization map						
For1	For2 For3 For4 For5	1 kb ribA ribH Rev4 Rev3 Rev2 Rev1				
Amplification and sequencing of the <i>dsr</i> gene						
Amplicon size (bp)	Primers for amplification (5'-3') Length (nt)	Primers for sequencing (5'-3') Length (nt)				
4546 bp	For1: GAAAGATTATGCCCGCGTTA20Rev1: GCCATATAACAGACTCCTCAAA22	For2: TGGCGTGAAAGTGATGGTAA20For3: TTGAAAATAACGGCGACACA20				

W. cibaria strain	CFU/g
Uninoculated LAB	4.37 x 10 ⁶
BAL3C-5	2.26 x 10 ⁹
BAL3C-5 B2	1.83 x 10 ⁹
BAL3C-7	1.82 x 10 ⁹
BAL3C-7 B2	9.15 x 10 ⁸
BAL3C-22	2.09 x 10 ⁹
BAL3C-22 B2	2.81 x 10 ⁹

Supplementary Table S2. Detection of LAB survival after dough fermentation and prior to the baking process

Doughs were independently inoculated with cells of each BAL3C strain at a concentration of 1×10^9 CFU/g, and after 16 h of fermentation prior baking, the level of LAB CFU/g for the inoculated doughs was determined by plating on MRS agar medium.

To that end, 10 g samples of dough (prepared as described in Materials and Methods) were homogenized in 90 mL of sterile peptone water (1 g/L peptone, 8.5 g/L NaCl) in 250 mL flasks and incubated at 28 °C for 1 h with shaking (200 rpm). For CFU/g quantification, samples of 1 mL were collected by centrifugation at 10 000 rpm and ten-fold dilutions of the supernatants were spread as 0.1 mL aliquots on MRS agar plates that were incubated at 30 °C for \sim 48 h.

In the spontaneously fermented uninoculated dough, low concentrations of LAB ($4.37x10^6$ CFU/g), likely endogenous to the white wheat flour, were detected. In addition, values >1x10⁹ CFU/g were detected in all doughs inoculated with each BAL3C strain.

W. cibaria strain	Direct determination (mg/100 g of bread)	HPLC (mg/100 g of bread)	Ratio Direct/HPLC
Without BAL	0.20±0.01	0.09±0.01	2.17
BAL3C-5	0.24±0.02	0.08±0.02	2.90
BAL3C-5 B2	0.45±0.04	0.56±0.02	0.81
BAL3C-7	0.25±0.00	0.16±0.02	1.50
BAL3C-7 B2	0.48±0.01	0.61±0.08	0.78
BAL3C-22	0.25±0.01	0.13±0.02	1.95
BAL3C-22 B2	0.43±0.06	0.46±0.06	0.93

Supplementary Table S3. Comparison of flavin levels present in the experimental breads quantified by direct fluorescence measurement (direct determination) or after HPLC analysis (HPLC)

*Bread samples were subjected to acidic and thermal treatment to convert flavins into riboflavin prior to measurement of fluorescence.

DEXTRAN IN RAMS

Supplementary Figure S1. Dextran levels produced by *W. cibaria* strains grown in RAMS medium. Values are represented as mean \pm standard deviation of three independent experiments. Statistical analyses were carried out by t-test to determine if parental and mutant dextran levels were significantly different (A), or by one-way Anova to establish differences in dextran production between groups (B). In both cases a *p* value ≤ 0.05 was considered significant.

Supplementary Figure S2. Riboflavin produced by *W. cibaria* strains grown in RAMS medium. Values are represented as mean \pm standard deviation of three independent experiments. Statistical analyses were carried out by t-test to determine if parental and mutant riboflavin levels were significantly different (A), or by one-way Anova to establish differences in riboflavin production between groups (B), in both cases a *p* value ≤ 0.05 was considered significant.

RIBOFLAVIN IN RAM

Supplementary Figure S3. Riboflavin produced by *W. cibaria* strains growth in RAM medium. Values are represented as the mean \pm standard deviation of three independent experiments. Statistical analyses were carried out by t-test to determine if parental and mutant riboflavin levels were significantly different (A), and by one-way Anova to establish differences in riboflavin production between groups (B) in both cases a *p* value ≤ 0.05 was considered significant.

Supplementary Figure S4. Real time analysis of the influence of FMN on riboflavin production by *W. cibaria* strains. The bacteria were grown in RAMS medium supplemented with 3 μ M FMN in a Varioskan Flask System. The growth was estimated by measurement of the OD_{600 nm} (A) and flavin fluorescence (B) was measured upon excitation at a wavelength of 440 nm and detection of emission at a wavelength of 520 nm.

Supplementary Figure S5. GC-MS analysis of breads for detection of soluble dextran hydrolyzed to isomaltose. Chromatograms of breads produced by fermentation with BAL3C-22 B2 (A), BAL3C-22 B2 (B), with only the dough microbiota (without LAB) (C) and of wheat dough (D) are depicted. The samples were resuspended in H₂O and treated with the *Chaetomium erraticum* dextranase at 30 °C for 18 h, as described in Material and Methods, prior to the GC-MS analysis.

Supplementary Figure S6. Statistical analysis of free riboflavin (A) and flavins (B) levels in experimental breads produced with *W. cibaria* strains. Values are represented as mean \pm standard deviation of three independent technical replicates. Statistical analyses were carried out by t-test to determine if levels of riboflavin and flavins synthesized by parental and mutant strains were significantly different ($p \le 0.05$).

Supplementary Figure S7. Determination of soluble (A) and total (B) dextran levels in experimental breads produced with *W. cibaria* strains. Values are represented as mean \pm standard deviation of three independent technical replicates. Statistical analyses were carried out by t-test to determine if levels of dextran produced by parental and mutant strains were significantly different ($p \le 0.05$).