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This work describes a method for deriving riboflavin overproducing strains of

Weissella cibaria by exposing three strains (BAL3C-5, BAL3C-7, and BAL3C-

22) isolated from dough to increasing concentrations of roseoflavin. By

this procedure, we selected one mutant overproducing strain from each

parental strain (BAL3C-5 B2, BAL3C-7 B2, and BAL3C-22 B2, respectively).

Quantification of dextran and riboflavin produced by the parental and mutant

strains in a defined medium lacking riboflavin and polysaccharides confirmed

that riboflavin was only overproduced by the mutant strains, whereas dextran

production was similar in both mutant and parental strains. The molecular

basis of the riboflavin overproduction by the mutants was determined by

nucleotide sequencing of their rib operons, which encode the enzymes of the

riboflavin biosynthetic pathway. We detected a unique mutation in each of

the overproducing strains. These mutations, which map in the sensor domain

(aptamer) of a regulatory element (the so-called FMN riboswitch) present in

the 5’ untranslated region of the rib operon mRNA, appear to be responsible

for the riboflavin-overproducing phenotype of the BAL3C-5 B2, BAL3C-7 B2,

and BAL3C-22 B2 mutant strains. Furthermore, the molecular basis of dextran

production by the six W. cibaria strains has been characterized by (i) the

sequencing of their dsr genes encoding dextransucrases, which synthesize

dextran using sucrose as substrate, and (ii) the detection of active Dsr proteins
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by zymograms. Finally, the parental and mutant strains were analyzed for

in situ production of riboflavin and dextran during experimental bread making.

The results indicate that the mutant strains were able to produce experimental

wheat breads biofortified with both riboflavin and dextran and, therefore, may

be useful for the manufacture of functional commercial breads.

KEYWORDS

lactic acid bacteria, Weissella cibaria, dextran, exopolysaccharide, riboflavin, vitamin
B2, functional food, functional bread

Introduction

Riboflavin (vitamin B2) is a water-soluble vitamin produced
by plants and many microorganisms. Riboflavin is the
precursor of flavin mononucleotide (FMN) and flavin adenine
dinucleotide (FAD), both of which act as electron carriers
in oxidation–reduction reactions, functioning as coenzymes
for hundreds of FMN- or FAD-dependent enzymes called
flavoproteins (1). Humans do not synthesize riboflavin, which,
consequently, has to be obtained from the gut microbiota and
the diet. Any excess of riboflavin is eliminated via the urinary
tract (2). Deficiency of this vitamin (ariboflavinosis) can provoke
damage to the liver or skin, as well as cerebral changes, and
alteration of glucose metabolism. Riboflavin is also involved
in the prevention of migraine, anemia, cancer, hyperglycemia,
hypertension, diabetes mellitus, and directly or indirectly in
oxidative stress (2, 3).

The recommended daily dose of riboflavin for a healthy
adult is in the range 0.9–1.6 mg (4, 5). In developed
countries these dosage levels can be achieved via a balanced
diet, as vitamin B2 is present in green vegetables, cereals
and dried fruits, and also from eggs, meat and dairy
products (6). Nevertheless, ariboflavinosis is a problem in
underdeveloped countries, and riboflavin supplements are
required by population groups at high risk of deficiency
due to specific diets, like vegans/vegetarians (low intake or
complete exclusion of dairy products and meat) or pregnant
women (especially those with lactose intolerance and/or little
meat intake) (7). Furthermore, processing and cooking of
vegetable products causes a loss of B-group vitamins, including
riboflavin (8).

Some food grade lactic acid bacteria (LAB) synthesize
vitamin B2. Thus, fermentation with these LAB offers
opportunities to improve the nutritional value of food products
and the development of novel foods with an enhanced vitamin
content. In addition, the adaptability of LAB to fermentation
processes, their biosynthetic capacity and metabolic versatility
are features that advocate their industrial application for
producing and/or increasing riboflavin concentration in foods.

In order to isolate riboflavin-overproducing strains, the
toxic compound roseoflavin (a structural analog of riboflavin)
has been widely used as a selection agent for isolating
spontaneous riboflavin-overproducing mutants, mainly
belonging to Lactococcus lactis, Lactiplantibacillus plantarum
(previously Lactobacillus plantarum), Limosilactobacillus
fermentum (previously Lactobacillus fermentum), and
Leuconostoc mesenteroides species (9–12). Fermented
products made with the riboflavin-overproducing strains
have been reported as a convenient and efficient food-grade
biotechnological procedure (11, 13–18).

Some LAB are also able to produce exopolysaccharides
(EPS), including dextrans, which have many industrial
applications (19–25). The high molecular weight dextran
produced by LAB (e.g., L. mesenteroides and lactobacilli), as
well as by Saccharomyces cerevisiae, were labeled as “food grade”
by EFSA in the year 2001 (21). These biopolymers possess a
linear backbone composed of glucopyranosides with α-(1→6)
linkages in the principal chain and with variable percentages of
α-(1→4), α-(1→3), or α-(1→2) branches (20). Dextrans are
hydrocolloid-like compounds that retain water and increase the
viscosity of a food matrix without affecting taste (22). Therefore,
dextrans are widely used as food additives (23). For example,
they are used to increase palatability: (i) by the bakery industry
and (ii) in the production of ice-creams, milk shakes, etc., (24).
Various authors have demonstrated the improvement of bread
quality by using dough enriched with dextrans (25, 26). LAB
dextrans can affect the technological properties of doughs and
breads by improving moisture retention and rheology, and
increasing the final volume, the softness of the crumb and the
shelf life of the final product (22). Furthermore, the addition
of enzymatically produced dextran improved the volume and
the texture of white bread, and also of bread containing 20%
of rye flour (27). Due to their ability to bind water and to
retain the CO2 produced during dough fermentation, dextrans
can mimic the viscoelastic properties of gluten, making these
bacterial EPS highly suitable for the manufacture of gluten-free
or low-gluten bakery products (22). A dextran-rich sourdough
obtained using a specific L. mesenteroides strain gave rise to
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several kinds of baked goods (from wheat rich dough products
to rye sourdough bread), which had improved freshness, crumb
structure, mouthfeel, and softness (28). Dextrans produced
in situ by three LAB strains (belonging to W. cibaria, W.
confusa, and L. fermentum species) isolated from sorghum
significantly improved the rheological properties of a dough
made of sorghum and wheat flour (29). Also, the addition of
20% sourdough fermented with a dextran-producing W. cibaria
strain reduced significantly crumb hardness in breads based on
buckwheat, teff, quinoa and wheat flours, as well as the staling
rate in buckwheat, teff and wheat sourdough breads (30). High
molecular weight dextrans synthesized by LAB are immuno-
stimulants in vitro and appear to have anti-inflammatory
properties, supporting their ability to improve the functionality
of various products, including the preparation of fermented
functional foods (31).

For the above reasons, the food industry is increasingly
interested in obtaining LAB strains for the in situ production
of dextran during food processing. If these strains were also able
to produce riboflavin, then the industrial interest would be even
higher. With this aim, we have previously isolated from mother
doughs made from rye, three strains of W. cibaria (BAL3C-
5, BAL3C-7 y BAL3C-22), which produce riboflavin and high
levels of dextran (32). In this work, these three strains were
used for selection of three riboflavin-overproducing W. cibaria
strains (named BAL3C-5 B2, BAL3C-7 B2, and BAL3C-22
B2). The ability of these B2 strains to synthesize high levels
of riboflavin and dextran has been tested and validated both
under laboratory growth conditions and with the manufacture
of experimental breads.

Materials and methods

Bacteria and growth conditions

The W. cibaria strains used in this work, and their
characteristics, are detailed in Table 1. The bacteria were grown
at 30◦C without shaking in MRS medium (Man, Rogosa,
and Sharpe medium, Condalab, Spain), MRS supplemented
with 5% sucrose (MRSS), BD DifcoTM Riboflavin assay
medium (RAM, Thermo Fisher Scientific, USA) containing
2% glucose or RAM supplemented with 2% sucrose (RAMS).
The LAB strains were grown in test tubes in a water
bath or in microtiter plates (Sterile 96-Well Optical White
w/Lid Cell Culture, Thermo Fisher Scientific, Rochester,
NY, United States) in a Varioskan Flask System (Thermo
Fisher Scientific, Waltham, MA, United States). The bacterial
growth was determined by measurement of the optical
density at 600 nm (OD600 nm). The growth rate (µ) of
the LAB in liquid media was determined as previously
described (32). The LAB CFU/mL of the liquid cultures was
determined by plating 100 µL aliquots of the appropriate

dilutions in MRS-agar medium and further incubation at
30◦C for 48 h.

Selection of riboflavin-overproducing
strains

The W. cibaria BAL3C-5, BAL3C-7, and BAL3C-22 strains
were individually grown in MRS medium to an OD600 nm of
1.5. Then, the bacterial cultures were diluted 1:100 in RAM
medium supplemented with roseoflavin (10 µg/mL) and grown
until the end of the exponential phase. Afterward, the LAB
were exposed to increasing concentrations of roseoflavin (50,
75, 100, 150, and 200 µg/mL) by sequential dilution and further
growth in RAM supplemented with the riboflavin homolog. The
BAL3C-7 and BAL3C-22 cultures grew even in the presence
of roseoflavin at 200 µg/mL, whereas W. cibaria BAL3C-5
showed tolerance up to 150 µg/mL of the toxic compound.
The roseoflavin resistant cultures were plated on MRS-agar and
incubated for 48 h. Subsequently, three colonies from each
roseoflavin-treated parental strain were randomly chosen to
evaluate their riboflavin production, and the highest producer of
each group was selected and designated as BAL3C-5 B2, BAL3C-
7 B2, and BAL3C-22 B2, respectively. Finally, the bacteria
present in the selected colonies were recovered by growth in
liquid MRS and stored at −80◦C in MRS supplemented with
glycerol at 20%.

Determination and analysis of the
deoxyribonucleic acid sequence of the
rib operons and of the dsr genes

The determination of the DNA sequences from the LAB
genomes was performed by the “chain termination method”
(Sanger sequencing), with a strategy of “primer walking” and
utilizing PCR fragments containing either the rib operons
or the dsr genes as DNA template. The oligonucleotides
used are reported in Supplementary Table 1. The assembled
and annotated DNA sequence reads have been deposited in
the NCBI-GenBank. The GenBank accession numbers of the
dsr genes are: ON677429 (BAL3C-5), ON677430 (BAL3C-7),
ON677431 (BAL3C-22), ON677432 (BAL3C-5 B2), ON677433
(BAL3C-7 B2), and ON677434 (BAL3C-22 B2). The GenBank
accession numbers of the rib operons are: ON420949 (BAL3C-
5), ON420950 (BAL3C-7), ON420951 (BAL3C-22), ON420953
(BAL3C-5 B2), ON420954 (BAL3C-7 B2), and ON420952
(BAL3C-22 B2). The obtained DNA sequences of the dsr
genes and the rib operons were compared with those of
the selected W. cibaria and W. confusa strains held in
GenBank using the BLASTN software (33). Sequences were
aligned using the ClustalW software (34). Phylogenetic trees
were made/inferred using the neighbour joining analysis
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TABLE 1 Bacterial strains used in this work.

W. cibaria strains Characteristics Source of isolation FMN riboswitch Reference

BAL3C-5 Riboflavin-and dextran-producer Fermented rye dough Wild-type (33)

BAL3C-7 Riboflavin-and dextra-producer Fermented rye dough Wild-type (33)

BAL3C-22 Riboflavin-and dextran-producer Fermented rye dough Wild-type (33)

BAL3C-5 B2 Riboflavin-overproducer and
dextran-producer

Spontaneous mutant of BAL3C-5 selected
by roseoflavin treatment

G35T mutant This work

BAL3C-7 B2 Riboflavin-overproducer and
dextran-producer

Spontaneous mutant of BAL3C-7 selected
by roseoflavin treatment

G129A mutant This work

BAL3C-22 B2 Riboflavin-overproducer and
dextran-producer

Spontaneous mutant of BAL3C-22
selected by roseoflavin treatment

C43T mutant This work

(35). Evolutionary analysis was conducted using MEGA11
software (36).

Gene analysis was performed with the EditSeq R© and
SeqBuilder Pro R© software (Version 15.3, DNASTAR, Madison,
WI, USA) to infer the amino acid sequences of their products.
The sequence reads were assembled and compared by using
the SeqMan Pro R© and MegAlign R© software (Version 15.3,
DNASTAR, Madison, WI, USA), respectively.

Secondary structure predictions of the sensor domain of
the FMN riboswitch were obtained by using the RNAfold web
server (The ViennaRNA Web Services, version 2.4.18). RNA
secondary structure drawings were performed with VARNA 3.9
software (37).

The Signal P 6.0 server was used to predict the leader
peptide of the Dsr and the location of the processing site in the
W. cibaria strains (38).

In situ detection of dextransucrases
(Dsr) produced by the BAL3C-5 B2,
BAL3C-7 B2, and BAL3C-22 B2 strains
by zymogram

The riboflavin-overproducing LAB were grown overnight in
MRS. Then, after sedimentation by centrifugation at 9,000 × g
for 10 min, the bacteria were used to inoculate either RAMS
or RAM to give an initial OD600 nm of 0.1. The cultures were
further incubated at 30◦C for 24 h. Afterward, the bacteria
were sedimented by centrifugation and the supernatants were
subjected to PAGE in an 8% SDS-polyacrylamide gel at constant
voltage (100 V). Afterward, Dsr activity was assayed in situ
following the method of Miller and Robyt (39) with the
modifications previously described (40). Briefly, the method
used included a washing step for SDS removal, synthesis of the
dextran by Dsr in sodium acetate buffer supplemented with 10%
sucrose during 17 h and detection of the Dsr activity by staining
with periodic acid-Schiff staining. To estimate the molecular
weight of Dsr, the pre-stained Precision Plus Protein Dual Color
Standards (Bio-Rad, CA, USA) including 15 polypeptides in the
range of 10–250 kDa was used.

Analysis of riboflavin and dextran
produced by bacterial cultures grown
in RAMS and RAM medium

The cells from overnight cultures of W. cibaria strains grown
in MRS were sedimented by centrifugation at 9,000 × g for
10 min and used to inoculate either RAMS or RAM to give an
initial OD600 nm of 0.1 and the bacteria were further grown at
30◦C as indicated in the Results section.

The fluorescence of the riboflavin present in the bacterial
cultures or supernatants was measured upon excitation at
a wavelength of 440 nm and detection of emission at a
wavelength of 520 nm by using a Varioskan Flask System
(Thermo Fisher Scientific, USA). Finally the concentration of
the riboflavin was determined using a calibration curve as
previously described (12).

The dextran present in the culture supernatants was
precipitated with three volumes of absolute ethanol and
washed twice with 80% (v/v) ethanol and its concentration
estimated as neutral carbohydrate content determined by the
phenol–sulphuric acid method using a glucose calibration
curve (41).

Laboratory production of experimental
breads

The LAB were grown in MRSS at 30◦C for 2–3 h with
low and constant aeration. After sedimentation of the bacterial
cells by centrifugation and two washings with 0.9% saline
solution, the cultures were diluted prior to inoculation of the
dough. To generate the doughs, refined organic wheat flour with
strength W200, from Molinos del Duero y Compañía General
de Harinas, S.L. (Carr. de Villalpando, 13, 49029 Zamora) was
used. The doughs contained 400 g of flour, 300 mL of water, 5%
sucrose, and 0.64% NaCl, and were prepared in a dough mixer.
Subsequently, the doughs were divided into portions of 50 g
and inoculated with the corresponding LAB [1 × 109 colony
forming units (CFU)/mL]. After kneading, each inoculated
dough portion was subdivided in another three portions of 15 g
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each, then fermentation was carried out at 30◦C for 16 h and
the experimental breads were generated in triplicate by baking
at 210◦C for 15 min. Prior to baking, the final concentration of
LAB (CFU/g) in the fermented dough was determined by plating
(Supplementary Table 2).

Analysis of riboflavin, flavins, and
dextran concentrations in the
laboratory breads

The laboratory prepared breads would contain free
riboflavin and other flavins synthesized by the LAB as well
as flavins naturally present in the flours. Therefore, soluble
riboflavin was extracted and quantified, as well as any other
flavins converted into riboflavin prior to quantification. Also,
dextran produced by the LAB could be in a soluble or insoluble
form. Therefore, soluble and total dextrans were independently
extracted and quantified.

To extract free riboflavin and soluble dextran from the
breads, samples (1.5 g) were placed in 15 mL FalconTM (Corning
Science, México) tubes and distilled water (3 mL) was added.
After vigorous vortexing, samples were incubated at 20◦C for
24 h. Then, to convert dextran into isomaltose 150 µL of a
solution containing 0.18 g of Chaetomium erraticum dextranase
(Sigma-Aldrich, Darmstadt, Germany) was added and samples
were incubated at 30◦C for 18 h, centrifuged at 8,000 × g for
10 min, and supernatants filtered by using a 0.22 µm filter.
Afterward, aliquots were stored at−20◦C until further analysis.

To extract flavins from the breads and to convert them into
riboflavin, samples (1 g) were placed in 25 mL flasks, and 0.1
M HCl (10 mL) was added. Then, the samples were autoclaved
at 121◦C for 30 min. Subsequently, the pH of the suspensions
was neutralized to a pH 6.5 by addition of 1.4 mL of 4 M sodium
acetate pH 9.5. Furthermore, to convert dextran into isomaltose,
0.5 mL of a solution containing 0.6 g of C. erraticum dextranase
was added and the samples were incubated at 30◦C for 18 h. To
remove solid residues, the samples were centrifuged at 8,000× g
for 10 min, and the supernatants filtered through a cheesecloth
and subsequently through a 0.22 µm filter. Afterward, the filtrate
was aliquoted and kept frozen at−20◦C until further analysis.

The concentration of riboflavin in the processed samples
was determined by measuring its fluorescence as described
in section “Analysis of riboflavin and dextran produced by
bacterial cultures grown in RAMS and RAM medium”, as well
as by chromatographic analyses. These latter analyses were
performed with a HPLC equipment composed of a degasser
system, a quaternary pump, an automated injector, a column
oven, an ultraviolet–visible diode array detector (UV–vis-DAD)
and a fluorescence detector (FLD) (Agilent-1200/1260 Infinity
II Series, Palo Alto, CA, USA). A Kinetex EVO C 18 100 Å
4.6× 150 mm, 5 µm internal diameter analytical column with a
SecurityGuard ULTRA Cartridges UHPLC C18 (Phenomenex,

Torrance, CA, USA) thermostated at 40◦C, was used for the
analytical determination of riboflavin. A ChemStation computer
software (Agilent, Palo Alto, CA, USA) recorded signals. HPLC
analyses were achieved by an isocratic elution at 0.6 mL/min
using the conditions described by Jakobsen et al. (42), with
a mobile phase constituted by a methanol/water (40:60 v/v)
mixture, freshly prepared every day. A fluorescence detector
set at an excitation wavelength of 449 nm and an emission
wavelength of 516 nm monitored the eluate. Spectral analyses
of the riboflavin standard and samples were performed to verify
the method’s selectivity.

The total dextran concentration was determined by
quantification of the isomaltose generated by the polymer
hydrolysis by gas chromatography-mass spectrometry (GC-MS)
using myo-inositol as internal standard, after derivatization with
hydroxylamine chloride in pyridine to form the oxime of the
isomaltose and generation of the trimethylsilylated derivative
by treatment with bis-trimethylsilyl trifluoroacetamide as
described (40). Quantification of isomaltose concentration
was performed according to peak area, corrected with the
response factors calculated for each compound using the
internal standard and the software GC-ChemStation Rev.
E.02.00 (2008) from Agilent (Palo Alto, CA, USA).

Statistical analysis

Exopolysaccharides (EPS) produced by the strains in growth
media was quantified using the phenol-sulphuric acid method.
T-tests were performed to determine if the values of the
parental and the mutant strains were significantly different, and
p-values were adjusted for multiple testing by the Benjamini
and Hochberg method (43). In addition, differences between
groups for EPS production by all strains (mutant and parental),
as well as for total and soluble dextran fractions in breads,
were performed with a one-way analysis of variance, and
mean pairwise comparisons were computed with a Tukey’s test.
Results are marked with letters and means with the same letter
are not significantly different (α = 0.05). All analyses were
performed with the R software version 4.1.3 (44).

In the case of evaluation of riboflavin production in growth
medium, for every parental-mutant pair, the effects of strains,
culture media, and their interaction were analyzed with a two-
way analysis of variance. A p value ≤ 0.05 was considered
significant. When interactions were significant, independent
t-tests were performed for each medium, and p-values were
adjusted for multiple testing by the Benjamini and Hochberg
method (43). Again, to establish differences between groups for
the riboflavin produced by all strains (mutant and parental)
as well as for flavins and free riboflavin in breads, a one-
way analysis of variance was performed and mean pairwise
comparisons were computed with a Tukey’s test. Results are
shown with letters and means with the same letter are not
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significantly different (α = 0.05). All analyses were performed
with the R software version 4.1.3 (44).

Results and discussion

Selection and analysis of W. cibaria
riboflavin-overproducing strains

Three W. cibaria strains (BAL3C-5, BAL3C-7, and BAL3C-
22) previously isolated from fermented rye dough and
characterized for their ability to produce both dextran and
riboflavin (32) were selected in this study and treated with
roseoflavin, with the aim to identify riboflavin-overproducing
strains, potentially useful for the production of functional bread
enriched in riboflavin and dextran.

The three parental strains were independently subjected to
cycles of treatment with increasing concentrations of roseoflavin
and three strains resistant to the riboflavin homologue (one
from each wild-type treated strain) were obtained. These
spontaneous mutants were designated as BAL3C-5 B2, BAL3C-
7 B2, and BAL3C-22 B2 and, using their parental strains
as control, were analyzed to determine their capability to
produce riboflavin and dextran in liquid medium. The RAMS
medium (containing 2% sucrose and lacking riboflavin and
polysaccharides), which we have shown to be suitable for the
analysis of the riboflavin and dextran produced by BAL3C-5,
BAL3C-7, and BAL3C-22 strains (33), was used.

The Dsr from LAB produce extracellularly dextran by
hydrolysis of sucrose molecules coupled to the transfer of
glucose to the nascent α-glucan polymer (16). Moreover, we
have shown that riboflavin produced by W. cibaria BAL3C-
5, BAL3C-7, and BAL3C-22, as is the case in other LAB (12,
45), can be detected and quantified in culture supernatants
(32). Therefore, after growing the six LAB for 23 h in RAMS,

the content of dextran and riboflavin present in the culture
supernatants was determined, and the final biomass estimated
by measuring the OD600 nm and by plating (Table 2).

The six strains produced similar levels of dextran, ranging
from 5.61 to 6.66 mg/mL with BAL3C-22 B2 being the highest
producer. Moreover, statistical analysis revealed that only
BAL3C-5 B2 and BAL3C-7 B2 produced slightly lower levels
of dextran compared to the parental BAL3C-5 (p = 0.0323) and
BAL3C-7 (p = 0.0209) (Table 2 and Supplementary Figure 1).

With regards to the riboflavin levels, bacterial cultures of
the six strains grown in RAMS or RAM were tested. The
B2 strains produced statistically significant higher levels of
riboflavin than their corresponding or the other two parental
strains (p = 7.33 × 10−20 or p = 3.45 × 10−21 in RAMS
or RAM) (Table 2 and Supplementary Figures 2, 3). After
23 h of growth in RAMS (containing glucose plus sucrose)
versus in RAM (containing only glucose), all the strains reached
a higher OD600 nm (3.2–2.8 in RAMS and 2.1–1.6 in RAM)
correlating with higher levels of CFU/mL (1.9 × 109–1.2 × 109

in RAMS and 9.2 × 108–5.6 × 108 in RAM) and consequently
produced higher levels of riboflavin. Apart from that, the
behavior of the strains was the same in both media, with the
highest levels of riboflavin being synthesized and released to
the media by BAL3C-5 B2 (3.45 and 1.82 µg/mL in RAMS and
RAM, respectively). In addition, the increase of the riboflavin
production by the B2 mutants compared with the production
of the corresponding parental strains was more pronounced in
RAM (ranging from 28- to 61-fold) than in RAMS (ranging
from 8- to 19-fold), with the lowest being for the pair BAL3C-22
B2 and BAL3C-22.

Furthermore, a simultaneous analysis of the bacterial growth
in RAM or in RAMS by measuring their OD600 nm and
production of riboflavin by fluorescence detection in real time
was performed and the growth rates during the exponential
phase of growth inferred (Figure 1). The highest µ was

TABLE 2 Comparative analysis of riboflavin and dextran production by the wild-type and mutant W. cibaria strains in RAMS and RAM media.

Medium RAMS RAMS RAM RAMS RAM RAMS RAM

Compound
strain

1Dextran 2Riboflavin OD600 nm CFU/mL

Concentration
(mg/mL)

3B2/wt
ratio

Concentration
(µ g/mL)

3B2/wt
ratio

Concentration
(µ g/mL)

3B2/wt
ratio

BAL3C-5 B2 5.61± 0.21B 0.88 3.45± 0.04a 19.17 1.82± 0.01α 60.67 3.2 1.9 1.3× 109 7.2× 108

BAL3C-5 6.35± 0.22A 0.18± 0.01d 0.03± 0.014 2.8 1.6 1.2× 109 6.5× 108

BAL3C-7 B2 5.74± 0.20B 0.88 2.53± 0.06b 14.05 1.35± 0.01β 45.00 3.0 2.0 1.9× 109 9.2× 108

BAL3C-7 6.55± 0.21A 0.18± 0.01d 0.03± 0.014 2.8 1.6 1.4× 109 6.8× 108

BAL3C-22 B2 6.66± 0.22A 1.01 1.66± 0.08c 8.74 0.84± 0.02γ 28.00 3.0 2.1 1.7× 109 8.4× 108

BAL3C-22 6.61± 0.17A 0.19± 0.01d 0.03± 0.004 2.8 1.6 1.4× 109 5.6× 108

1Dextran concentration in culture supernatants was determined by measuring neutral sugars concentration after ethanol precipitation. The values are expressed as mean ± standard
deviation (SD) of three independent experiments.
2Riboflavin concentration present in the culture supernatants was inferred by measuring its fluorescence and with a riboflavin calibration curve. The values are expressed as
mean± standard deviation (SD) of three independent experiments.
3W. cibaria B2 mutant/wild-type ratio for riboflavin concentration determined in the culture supernatants. Values with the same superscript letter have no statistically significant
divergences (p value ≤ 0.05).
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FIGURE 1

Detection of riboflavin production by the Weissella cibaria strains. Real time monitoring of growth (A,C,E) and riboflavin (B,D,F) production of
the different W. cibaria strains analyzed in this study [BAL3C-5 and BAL3C-5 B2 (A,B); BAL3C-7 and BAL3C-7 B2 (C,D); BAL3C-22 and BAL3C-22
B2 (E,F) in RAM or in RAMS]. In the left panels, the plots display the growth curves of each strain, with the symbols and error bars representing,
respectively, the average and standard deviation of three independent experiments. Growth rate constants (µ) were calculated during the
exponential phase for each of the strains in the two-culture medium. The µ values are expressed as mean ± standard deviation of three
independent experiments. In the right panels, the plots display the riboflavin production curves of each strain. Symbols and error bars represent,
respectively, the average and standard deviation of three independent riboflavin fluorescence measurements.
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observed for the BAL3C-7 B2 strain when grown in either RAM
(µ = 0.99 h−1) or RAMS (µ = 0.93 h−1) medium and the
lowest for BAL3C-5 in both RAM (µ = 0.78 h−1) and RAMS
(µ = 0.79 h−1). Moreover, correlating with the data presented
in Table 2, the six strains reached a higher final biomass in
RAMS than in RAM. In addition, as expected, the BAL3C-5 B2,
BAL3C-7 B2, and BAL3C-22 B2 strains produced high levels of
riboflavin in either RAMS or RAM media and during both the
exponential and stationary phases of growth.

Taken together our results reveal that the W. cibaria BAL3C-
5 B2, BAL3C-7 B2, and BAL3C-22 B2 strains overproduce
riboflavin and maintain the capability to produce dextran.

Characterization of the mutations of
the riboflavin-overproducing strains

The enzymes involved in the riboflavin biosynthetic
pathway are encoded by the rib operon composed of the ribG,
ribB, ribA, and ribH genes, whose expression is regulated by a
transcriptional FMN riboswitch located in the 5’ untranslated
region of the messenger RNA. This regulatory element consists
of a sensor domain (the aptamer) that contains five hairpins
(P2/L2 to P6/L6) and is closed by the P1 basal helix (Figure 2A),
whose 3’-end is connected to the regulatory domain (or
expression platform). The regulatory domain is predicted to
adopt two alternative configurations that correspond to the ON

state (characterized by an anti-terminator secondary structure)
and to the OFF state, which includes an intrinsic transcriptional
terminator preventing expression of the rib operon [Figure 2B;
(45)]. Binding of the effector (FMN) to the aptamer induces
a conformational change in the expression platform from the
ON to the OFF state, thus avoiding the metabolic burden
of expressing the genes involved in riboflavin biosynthesis
when not required.

Roseoflavin-resistant mutants of LAB usually harbor
mutations that impair the regulatory activity of the rib operon
riboswitch, enabling the bacterial cells to synthesize riboflavin in
the presence of either FMN or roseoflavin. Therefore, to localize
and characterize the mutations of the riboflavin-overproducing
W. cibaria strains, the DNA sequence of the entire rib operon,
including the FMN riboswitch, was determined for each of them
as well as for the respective parental strains. No differences were
detected between the DNA sequences of the rib operons of the
three parental strains. The operons of BAL3C-5 B2, BAL3C-7
B2, and BAL3C-22 B2 each showed only one mutation located
in the untranslated region of the rib mRNA.

Analysis of the folding of this region with the RNAfold
software predicted the existence of an FMN riboswitch aptamer
(matching the consensus sequence and structure) where the
three mutations were located (Figure 2A). In this context, strain
BAL3C-5 B2, which showed the highest production of riboflavin
in liquid growth media, carries in its DNA the mutation G35T,
and as a consequence in its FMN riboswitch there is a U

FIGURE 2

Secondary structure predictions of the riboswitch domains. (A) Secondary structure prediction obtained by using RNAfold web server with the
sequence of the nascent rib operon mRNA of Weissella cibaria BAL3C-5. The free energy associated with this aptameric conformation is shown.
Red arrows and red circles indicate altered ribonucleotides in the aptamer in BAL3C-22 B2 (U at position 43), BAL3C-5 B2 (U at position 35) and
BAL3C-7 B2 (A at position 129) due to the mutations present in the DNA of these strains. The strain containing the base change is indicated in
each case. (B) Schematic representation of the possible “ON” and “OFF” conformations of the FMN riboswitch. The FMN riboswitch mechanism
of gene expression is based on ligand binding and signal transduction through conformational changes from the “ON” state (anti-terminator
structure) to the “OFF” state (transcriptional terminator). Aptamer and expression platform domains are indicated over the “OFF” state structure.
The sequence involved in the formation of the transcriptional terminator is red colored. Arrows indicate transcription of the rib operon.
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instead of a G at the position 35 (position 1 corresponding
to the putative start site of the rib mRNA), a change that
would destabilize the P2 stem of the aptamer. The BAL3C-
22 B2 strain has the lower riboflavin-overproducing phenotype
and contains the mutation C43T, that results in an aptamer
with a U43 instead of the C43 (which is predicted to pair with
the G35 in the wild-type riboswitch). This mutation should
also affect the stability of the P2 helix, although to a lesser
extent, because a base pair GU could still be formed. Finally,
BAL3C-7 B2 carries the mutation G129A, that results in the
change of one ribonucleotide in the aptamer at position 129.
Previous 3D crystallographic studies performed with the FMN
riboswitch of Fusobacterium nucleatum have demonstrated that
the same relative position in the aptamer is involved in the direct
interaction with the FMN effector (46).

The location of the mutations in BAL3C-5 B2, BAL3C-7 B2,
and BAL3C-22 B2 indicates that these changes could impair or
prevent the binding of FMN to the aptamer, thereby avoiding
its inhibitory effect and being responsible for the riboflavin-
overproducing phenotype of these strains.

To support this hypothesis, growth, and production
of riboflavin by the mutant and parental strains in
RAMS supplemented with FMN was analyzed in real time
(Supplementary Figure 4). All the strains showed the same
growth pattern (Supplementary Figure 4A). The addition of
FMN altered the pattern of fluorescence of the cultures of the
three parental strains ascribed to flavins production during
growth. By contrast, with the results obtained in absence of
FMN (Supplementary Figure 4B), with detection of riboflavin
production from the beginning of the growth (Figures 1B,D,F),
the fluorescence decreased during the early stage of growth,
as we have previously detected for L. plantarum wild–type
strains (12), and did not start to increase until the middle
of the exponential phase (Supplementary Figure 4), as we
have previously observed for these W. cibaria strains in the
presence of riboflavin (32). These results were expected due
to an inhibitory effect of the FMN, upon internalization, in
the riboflavin biosynthesis, proceeding to a latter expression of
the rib operon when levels of the effector are exhausted in the
cells. However, as expected the presence of the FMN had no
influence on riboflavin production by the three mutant strains,
since increase of fluorescence due to the presence of flavins was
observed from the beginning of the exponential growth phase,
as we have previously observed for riboflavin-overproducing
L. plantarum mutants also carrying point mutations located
in its corresponding aptamer of the FMN riboswitch (45).
Consequently, these results and the fact that no mutations
were found in the rib operon encoding the enzymes involved
in the riboflavin biosynthetic pathway, strongly suggest that
the mutations in the FMN-riboswitch are responsible for the
riboflavin-overproducing phenotype of the W. cibaria B2
strains. However, to prove this hypothesis a deep transcriptional
analysis has to be performed in a future work, as has been

already done for a L. plantarum riboflavin-overproducing
mutant (45).

In addition, we performed a comparative analysis of the
rib operon sequences of some W. cibaria and W. confusa
strains whose genome sequences are publicly available. In this
analysis, the rib operons of BAL3C-5, BAL3C-7, and BAL3C-
22 were included. The DNA sequence of the rib operon from
the three W. cibaria parental strains showed 100% identity with
that of W. cibaria CH2, a strain isolated from cheese of the
occidental Himalayas. Usually, phylogenetic investigations of
the genus Weissella are based on rrs (encoding the 16S rRNA)
and/or pheS genes sequences (32, 47). Recently, a comparative
genomic analysis of Weissella species allowed the construction
of a whole genome phylogenetic tree based on single-copy
core orthologs (48). Either based on single gene sequences or
whole genome comparisons, W. cibaria and W. confusa appear
to be phylogenetically closely related, grouping together in
the same cluster.

The phylogenetic relationship of BAL3C-5, BAL3C-7, and
BAL3C-22 with other W. cibaria and W. confusa strains based
on rib operon sequences is depicted in Figure 3A. In spite of
the high degree of rib operon sequence similarity shared by
all the strains, BAL3C-5, BAL3C-7, and BAL3C-22 grouped
together with CH2 in a separate branch, as expected by its
100% sequence identity. It is worth noting that all W. cibaria
and W. confusa strains included in the analysis were placed in
divergent branches although, as stated before, the two species
belong to the same phylogenetic cluster. This fact may support
the use of the rib operon as marker for the discrimination
between Weissella species in future phylogenetic studies.

Identification of the dsr genes and
detection of active Dsr enzymes
synthesized by the mutant strains

Only one Dsr enzyme encoded by a dsr gene is required
for the synthesis of the dextran. Therefore, the DNA sequences
of the dsr genes from the three parental and the three
mutant strains were determined. The genes of the six strains
had a length of 4,342 bp and were identical, and also 99%
identical to the corresponding gene of W. cibaria CH2. We
also analyzed the phylogenetic relationship of these strains with
other W. cibaria and W. confusa strains, based on the dsr
gene sequences (Figure 3B). As observed in the tree based on
the rib operon sequences, W. cibaria BAL3C-5, BAL3C-7, and
BAL3C-22 dsr genes grouped together with that of the CH2
strain in the same branch, confirming the close relationship
between the four strains. However, this group is the exception
when comparing the trees based on the dsr gene and on
the rib operon, since different evolutionary relationships were
detected. The most important observation was that all the
W. cibaria strains analyzed were not placed together in the same
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FIGURE 3

Neighbor-joining phylogenetic rooted trees based on the sequences of the rib operon genes [3,290 nt; panel (A)] and of the dsr genes [4,546 nt;
panel (B)], showing the taxonomic location of the analyzed strains. The percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1,000 replicates) are shown above the branches (64). The tree is drawn to scale, with branch lengths in the same
units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum
Composite Likelihood method (65) and are in the units of the number of base substitutions per site. This analysis involved 25 nucleotide
sequences in the case of the rib operon sequences and 22 for the dsr gene sequences. All ambiguous positions were removed for each
sequence pair (pairwise deletion option). The total number of positions in the final dataset was 3,650 and 4,584 position for the rib operon and
dsr analysis, respectively. Accession numbers from GenBank are given in brackets.

divergent branch, indicating that the use of this marker will not
discriminate between W. cibaria and W. confusa within the same
phylogenetic cluster.

The inferred sequence of amino acids of Dsr showed that
the dsr genes encode a protein of 159.099 kDa, which has an
amino-terminal signal peptide involved in protein processing
and secretion in Gram-positive bacteria. The analysis of the
amino acid sequence of Dsr with the program Signal P 6.0
allowed us to predict that the processed extracellular Dsr has a
molecular mass of 156.411 kDa.

Furthermore, since Dsr is extracellular, and with the aim
of detecting the active form of the enzyme, supernatants of
cultures of BAL3C-5 B2, BAL3C-7 B2, and BAL3C-22 B2
grown in RAMS or in RAM for 24 h were used to perform
zymograms by in situ synthesis of dextrans after fractionation
in SDS-polyacrylamide gel (Figure 4). The development of the
gel revealed only one intense band at the expected position
(156 kDa) in the culture supernatants of the three strains grown
in RAMS and a very faint band in the samples grown in RAM. As
a consequence, the results revealed that the production of active

Dsr in this W. cibaria strains is induced when sucrose is present
in the growth medium.

We have previously detected, with the same in situ
methodology, this behavior for W. cibaria Av2ou, W. confusa
FS54 and Leuconostoc lactis AV1n strains isolated from various
Tunisian habitats (40). Moreover, in the case of L. lactis AV1n
isolated from avocado, like for L. mesenteroides NRRL B-
512F (49), it has been demonstrated that in the presence of
sucrose induction of the dsr genes expression takes place at
the transcriptional level (50). However, this is not a general
feature of LAB, since zymogram analysis of soluble Dsr
from five W. cibaria strains and one W. confusa isolated
from sourdoughs revealed higher enzyme activity when the
bacteria were previously grown in the presence of glucose
instead of sucrose (51). This behavior was also observed
for the W. confusa V30 strain isolated from an olive tree
leaf (40) and for Lactobacillus sakei MN1 isolated from
meat (52). Consequently, two different patterns of response
to the presence of sucrose have been detected for the
expression of the dsr of LAB independently of the isolation
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FIGURE 4

In situ detection of dextransucrase activity in cell free supernatants of LAB cultures. The indicated Weissella cibaria riboflavin-overproducing
strains were grown in the presence of glucose [Riboflavin assay medium (RAM)] or glucose plus sucrose [Riboflavin assay medium with sucrose
(RAMS)], the culture supernatants were subjected to SDS-PAGE and after protein renaturation, were analyzed in situ for Dsr activity. S, protein
Mw standard.

habitat including strains belonging to the Weissella genus and
W. cibaria species.

Evaluation of BAL3C-5 B2, BAL3C-7 B2,
and BAL3C-22 B2 for experimental
bread making

Preparation of experimental breads and
extraction of dextran and flavins

The riboflavin-overproducing and the parental W. cibaria
strains were independently tested for their capability to produce
riboflavin and dextran in wheat doughs supplemented with
sucrose and fermented for 16 h. To induce the synthesis of the
Dsr, the W. cibaria were grown in MRSS medium containing
sucrose, prior to inoculation of the doughs. As a control, a dough
without W. cibaria strains was used. After the fermentation
period, LAB viability was evaluated by plating (Supplementary
Table 2). In the control dough, a bacterial concentration of
4.37× 106 CFU/g was detected, whereas in all the other doughs
inoculated with W. cibaria strains, the LAB concentration
ranged from 9.1 × 108–2.8 × 109 CFU/g. Since the LAB
were inoculated prior to fermentation, at a concentration of
1 × 108 CFU/g, the results suggested a good survival and
further growth of the inoculated W. cibaria strains during
dough fermentation. Furthermore, after the baking process,
breads were analyzed for their content in flavins and dextran
(Figures 5, 6).

To determine specifically the concentration of the
dextran without interference of other potential polyglucans
present in bread, the C. erraticum dextranase was used to
hydrolyze the polymer, and the isomaltose generated was
detected and quantitated by GC-MS analysis (Figure 5 and

Supplementary Figure 5). The dextranase of C. erraticum
specifically hydrolyses dextran to isomaltose (53), and it has
been previously used in a specific manner to convert dextran
synthesized in situ by W. confusa in wheat sourdough into
the disaccharide (54). However, in that particular case, the
dextranase was used in conjunction with an α-glucosidase from
Aspergillus niger, to convert the isomaltose in glucose, that was
subsequently quantified (54).

In addition, two procedures were applied for the extraction
of the compounds of interest. On one hand, free riboflavin and
soluble dextran were extracted from the breads by incubation
at 20◦C for 24 h, upon water addition. Then, the riboflavin
fluorescence (Figure 5A) and the levels of isomaltose generated
by dextran hydrolysis (Figure 6A) were quantified. On the
other hand, to determine levels of flavins and total dextran
present in the breads, the extraction and conversion was
performed at high temperature under acidic conditions and
further treatment with the dextranase of C. erraticum. This
procedure resulted in conversion of the flavins present in the
sample into riboflavin (Figure 5B) and dextran to isomaltose
(Figure 6B). Next, riboflavin was quantified by fluorescence
spectrometry, directly (Figure 6) or after HPLC fractionation
(Supplementary Table 3).

Free riboflavin and flavins content in
experimental breads

The results obtained when the levels of riboflavin were
measured without HPLC fractionation, revealed that the
parental strains did not increase significantly the concentration
of either free riboflavin or flavins (Figure 5) compared with
those obtained by fermentation with only the dough microbiota.
However, the riboflavin-overproducing strains increased with
statistical significance the concentrations of free riboflavin (6.1-
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FIGURE 5

Determination of the free riboflavin and the flavin levels in breads produced with Weissella cibaria strains. Levels of water-soluble riboflavin (free
riboflavin) (A) or riboflavin generated by acidic hydrolysis at high temperature of flavins (flavins) (B) present in the breads are depicted. The
means of two determinations and the standard deviations are indicated. Values with different superscript letters indicate that the levels differed
significantly (p ≤ 0.05, see details of statistical analysis in Supplementary Figure 6).

to 10-fold; p = 2.76 × 10−5) (Supplementary Figure 6A) and
flavins (2.1- to 2.4-fold; p = 8.32 × 10−5) (Supplementary
Figure 6B) over the control sample levels. Likewise, the three
mutant strains enriched the breads in riboflavin and flavins
more than their corresponding parental strains (Supplementary
Figure 6). In addition, both BAL3C-5 B2 and BAL3C-7
B2 provided similarly high levels of free riboflavin (around
125 µg/100 g of bread). Also, in the breads obtained here
by fermentation only with one of these two mutant LAB, in
the absence of yeast, we detected around 465 µg of flavins
converted into riboflavin/100 g, this value being similar to
the 681 µg/100 g obtained with the riboflavin-overproducing
mutant L. plantarum B2 of industrial interest during bread
production in co-fermentation with yeast, taking into account
that products obtained with yeast only contained up to
241 µg/100 g (55). Thus, a synergetic effect of L. plantarum

B2 and yeast was observed, also detected for L. fermentum
mutants (11) and for BAL3C-5 B2 and BAL3C-7 B2 strains
(unpublished results). Furthermore, the levels of riboflavin in
the breads produced with each of the 3 W. cibaria mutant
strains (428–480 µg/100 g) were higher than that reported for
Czech white bread (208 µg/100 g) (56) or for the top five white
bread products high in riboflavin (337–383 µg/100 g).1 Thus,
these results show a good ability of the riboflavin-overproducing
W. cibaria to generate bread biofortified with vitamin B2.

We have previously shown that riboflavin produced by
riboflavin-overproducing L. plantarum mutants in growth
medium could be reliably quantified by direct measurement of
its fluorescence without HPLC fractionation, and that the low

1 http://www.dietandfitnesstoday.com/riboflavin-in-white-bread.php
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FIGURE 6

Determination of soluble and total dextran levels in breads produced with Weissella cibaria strains. Levels of water soluble dextran (soluble) (A)
or dextran extracted after acidic and thermal treatments and hydrolyzed with dextranase (total) (B) present in the breads are indicated. The
means of two determinations and the standard deviations are indicated. Different superscript letters indicate that the levels differed significantly
(p ≤ 0.05, see details of statistical analysis in Supplementary Figure 7).

levels produced by the parental strains could not be detected
after the chromatographic fractionation (12). Therefore, to
validate that the method used to convert flavins in riboflavin
and the direct fluorescent detection of this compound were
reliable, samples of the treated bread were first fractionated
by HPLC and then the riboflavin was detected by fluorescence
and quantified. Supplementary Table 3 depicts the levels of
riboflavin detected by direct measurement of the fluorescence
or after HPLC fractionation. After the chromatographic step,
a fluorescent peak corresponding to riboflavin was observed
in the samples of the breads fermented with the parental
and mutant strains (result not shown), that was quantified.
However, when the results obtained by the two methods
were compared, we detected only similar levels for the breads
fermented with BAL3C-5 B2, BAL3C-7 B2, or BAL3C-22 B2, the

ratio of direct/HPLC levels being 0.81, 0.78, or 0.93, respectively
(Supplementary Table 3). In the case of the breads produced
with the parental strains BAL3C-5, BAL3C-7, and BAL3C-
22, or spontaneously fermented without LAB inoculation, the
ratios of the quantified riboflavin levels were 2.90, 1.5, 1.9,
or 2.2, respectively. Therefore, these results validate the direct
quantification method to determine concentration of flavins
extracted from bread, and suggest that when the riboflavin
production is low, it is more reliable than the HPLC method.

In recent years, riboflavin biofortification of fermented
foods rather than vitamin supplementation has attracted great
interest in the food industry, although as far as we know there
are not yet any commercialized cereal products biofortified
with vitamin B2 by LAB. In particular, L. plantarum and
L. fermentum strains were successfully employed to obtain
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vitamin B2-enriched experimental bread (11, 14). Although in
a previous study we reported on the selection of riboflavin-
producing W. cibaria strains (32), this is the first work
where robust vitamin-B2 overproducing derivatives belonging
to this genera have been obtained. Indeed, apart from the
widely reported applications of L. plantarum strains (57, 58),
only few species of food-grade bacteria including L. lactis
(9), L. mesenteroides, P. freudenreichii (10), L. fermentum
(11) and Limosilactobacillus reuteri (59) have been reported
for the vitamin B2 bio-enrichment of fermented foods
endorsing the biotechnological importance of exploring the
microbial biodiversity of LAB from different species and
ecological niches.

Soluble and total dextran content in
experimental breads

Supplementary Figure 5 depicts examples of representative
chromatograms obtained from the GC-MS analysis of soluble
dextran present in the wheat dough, and in breads obtained
by fermentation with only the dough microbiota, or in
presence of either BAL3C-22 B2 or BAL3C-22 (Supplementary
Figures 5A,B). The peak corresponding to the isomaltose was
detected in all breads analyzed (Supplementary Figures 5A–
C), but not in the wheat dough (Supplementary Figure 5D). In
addition, the dough contained maltose that was still present in
all the breads. Moreover, production of lactic acid as well as high
concentration of fructose (presumably generated by the catalysis
performed by the Dsr) was only observed in breads fermented
with the LAB strains (Supplementary Figures 5A,B).

Taking into account the quantification of the isomaltose
detected by the GC-MS analysis, the results reported in
Figure 6 revealed that the six strains tested produced similarly
high levels of soluble (210–247 mg/100 g of bread) and
total (280–310 mg/100 g of bread) dextran significantly
higher than those present in the control sample (34 and
80 mg/100 g of bread, respectively, with p = 7.58 × 10−5 and
p = 3.80 × 10−5) (Figures 6A,B, respectively), and with no
differences between each couple of parental and mutant strains
(Supplementary Figures 7A,B). Therefore, the overall results
obtained here support the potential usage of the W. cibaria
riboflavin-overproducing strains to generate bread enriched in
riboflavin and dextran.

In this context, the use of W. confusa has been reported as a
promising strategy for efficient in situ production of dextrans in
sourdoughs without strong acidification resulting in bread with
improved volume and crumb softness (25). Similarly, dextran
synthesized in situ by W. confusa influenced the rheological,
technological and nutritional properties of whole grain pearl
millet bread, leading to increased free phenolic content and
antioxidant activity, as well as lowered glycemic index and
improved in vitro protein digestibility (60). In a recent study,
a mixed fermentation with W. confusa and Propionibacterium
freudenreichii has been proposed for in situ fortification of soya

flour and rice bran in order to improve texture and vitamin B12

content of bread (61).
The use of dextran is not widely spread in the bakery

field even though its impact on bread volume and texture
was shown (62). Strains of Weissella cibaria used as starter
cultures for wheat and sorghum sourdoughs synthesized EPS
(0.08 to 0.8%) and enhanced the texture, nutritional value,
shelf life, and machinability of wheat, rye, and gluten-free
breads (28). The addition to the dough of 10% dextran-enriched
sourdough as a starter, was sufficient to achieve significant
increase in wheat bread volume (63). Also, the crumb hardness
of sorghum, buckwheat, teff, and quinoa breads is reduced
by dextrans produced in situ by strains of W. cibaria (29,
30). Dextran content in the experimental bread prepared using
parental (BAL3C-5, BAL3C-7, and BAL3C-22) or riboflavin
overproducing (BAL3C-5 B2, BAL3C-7 B2, and BAL3C-22 B2)
strains was about 0.30%, which is within the concentration range
of hydrocolloids commercially applied in bread making (22).

Conclusion and future
perspectives

As far as we know this is the first report related to the
isolation of W. cibaria riboflavin-overproducing mutants that
are able to produce high levels of dextran. Moreover, the
mutants were able to produce both riboflavin and dextran,
in situ, during dough fermentation. Therefore, the W. cibaria
BAL3C-5 B2, BAL3C-7 B2, and BAL3C-22 B2 strains seems
to have the potential to be used for the production of
functional food. As a further prospect, we will investigate
whether sourdoughs fermented with the LAB mutants are
able to enhance the texture, nutritional value and shelf life of
sourdough-breads made at a pilot plant scale.
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