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Abstract  Human-industrial activity causes a remarkable increase in the arsenic 
(As) environmental concentrations, with a potential impact in plant and animal 
health, and may cause severe losses in biodiversity. This metalloid is bioaccumula-
tive through the food chain and highly associated with different types of cancers. To 
overcome the inherent drawbacks of physicochemical removal techniques, biologi-
cal treatments arose as adequate and cost-effective remediation alternatives for As 
pollution. An interest arises from the endophytes, which live inside the host plant 
and have been studied for their plant growth-promoting properties, production of 
bioactive molecules, biocontrol processes, and As detoxification. The integration of 
bioremediation with multiple omic technologies provides, moreover, innovative 
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approaches to handle As remediation. The aim of this review is to show the latest 
knowledge, advances, and applications in arsenic bioremoval. We will focus on the 
following items: (1) human and environmental health, (2) biological tools for reme-
diation with an emphasis in plants-microbiome interactions and omic technologies, 
(3) advances in As speciation analysis, and (4) As biosensors.

Keywords  Arsenic · Bioremediation. · Bioreactors · Analytical methods · Omics · 
Biosensor.

14.1  �Introduction

Living soils house the largest deposit of genes from fungi, bacteria, protozoa, inver-
tebrates, algae, etc. Therefore, the soil is considered the most dynamic, complex, 
and biodiverse habitat that exists providing many benefits for humans (Wall et al. 
2015). However, they are subjected to important human disturbance being the main 
global change driver (Smith et al. 2016). Degraded soils cover 24% of the global 
land area (35 Mkm2; Bai et al. 2008) and one third are polluted. The intense anthro-
pogenic activities and the expansion of the industry have led to a large-scale increase 
in the release of toxic metals (As, Cr, Pb, Hg, Cd, U, etc.) into the environment 
(Horta et al. 2015). Toxic metals have affected the dynamics of the complex ecosys-
tems present in the pedosphere, due to its toxicity, nonbiodegradable nature, and 
bioaccumulation capacity throughout the food chain (Gall et al. 2015). Arsenic (As) 
is a metalloid widely distributed occurring both in organic and inorganic forms and 
in natural and anthropogenic environments (soil and water). As are present in soils 
under different chemical forms or types of binding, which affect its bioavailability, 
mobility, and toxicity, due to its transfer to aquatic media and uptake by plants, with 
the subsequent introduction into the food chain (Zhao et al. 2010). The forms of As 
present in soils depend on the type and amounts of sorbing components of the soil, 
the pH, and the redox potential (Anawar et al. 2018). Thus, As(V) is the main As 
species in aerobic soils. It has a strong affinity for iron oxides/hydroxides in soil; 
therefore, the concentrations of arsenate in soil solutions are usually low (Zhao 
et al. 2010). However, in reducing environments such as flooded paddy soils, As(III) 
is the dominant As species. In fact, flooding of paddy soils leads to mobilization of 
arsenite into the soil solution and enhanced As bioavailability (Kumarathilaka et al. 
2018). Regarding organic species of As (DMA, MMA, and TMAO), they also can 
be found in soils although their concentrations usually account for less than 5% of 
As total (Huang et al. 2011).

Since the beginning of the twentieth century, As was known as a causal factor of 
different types of cancers (O’Donovan 1924). However, it was not until the 1970s 
when scientific interest in the presence of As in the soil began as a potential source 
of this carcinogen (Fig. 14.1). Hot spots in the As distribution are South and North 
America, Asia, and Central Africa (Amini et al. 2008). Among the main anthropo-
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genic sources of As in the environment, we can highlight the smelting of metals 
(specially copper), pharmaceutics and medical waste incineration, manufacturing, 
pesticides, cattle care, dyeing activity, fossil fuel utilization, wood burning, and 
semiconductor production, among others (Wang et  al. 2017a; Gupta et  al. 2019; 
Murcott 2012; Government of New South Wales 2017; Kant 2012; Shankar et al. 
2014). The environmental impact of As is mainly displayed in two ways: (i) the in 
situ impact, as a contaminant in soil, air, and water – not only affecting biodiversity 
in animals and plants but also modifying or limiting microbial populations – and (ii) 
its presence in food chain, as a potent toxic and carcinogen, affecting human health. 
Both aspects are intimately related since As arrives at the food chain via plant uptake 
and vegetable accumulation that, at the same time, affects the feeding of farmed 
animals (Santra et al. 2013).

There are several physicochemical methods capable of removing As from con-
taminated water such as membranes, coagulation, anion exchange, disposable iron 
media, and softening adsorption (Bibi et al. 2017; Nidheesh and Singh 2017; Wang 
et al. 2018). However, the elimination or stabilization of As in contaminated soils is 
not feasible, in most cases, using this type of treatment. The use of indigenous organ-
isms (mainly plants, fungi, and prokaryotes) to eliminate or stabilize the As of soils, 
through their metabolism, started in the 1990s (Fig. 14.1), and it has proved to be a 
successful eco-friendly option. Different terms have been used to describe the pro-
cess to clean up contaminated environments based on the major microorganism 
responsible for recovery. As a general rule, when the biological agent is used, the 
term utilized is “bioremediation” (Kumar et al. 2011); but this term is also used when 

Fig. 14.1  Scientific production in terms of number of published papers whose subject was: As 
contaminated soils (sensu lato) (ligh blue), As and phytoremediation (orange), As and mycoreme-
diation (gray), As and rizhosphere (yellow), As contaminated soils and prokaryotes (dark blue), As 
and microbiome from plant metaorganism (green)
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sensu stricto microorganisms are employed (Sing 2014). The utilization of plants to 
remove the pollutants is known as “phytoremediation” (Wang et al. 2011), and the 
use of fungi is named “mycoremediation” (Barrech et al. 2018). The contribution of 
these techniques to the contaminated soils’ recovery is shown in Fig.  14.1. The 
uptake and accumulation capacity of As in plants varies widely, from plants known 
as “excluders” that have limited capacity of As translocation from roots to leaves to 
“hyperaccumulator” species that are able to uptake and translocate large amount of 
As to different plant tissues. The presence of As in plants was first described by 
Hengl et al. (1930), but has not been considered as an approach to remove pollutants 
from the environment until the end of the twentieth century (Fig.  14.1). 
Phytoremediation can also be divided into diverse techniques (Ma et  al. 2016) 
depending if the pollutant is converted into less toxic forms (phytodegradation) and 
volatile species (phytovolatilization), accumulated in the aerial part (phytoextrac-
tion), accumulated in the root (phytostabilization), or metabolized by the rhizosphere 
microorganisms (rhizodegradation; Tangahu et  al. 2011). The different strategies 
(bio-, phyto-, and mycoremediation) are frequently addressed in isolation; however, 
an implementation in the recovery systems requires the assembly of all elements of 
the system. Interactions between plants and microorganisms show complex interac-
tions playing a pivotal role in the removal of toxic metals (Basu et al. 2018).

As-tolerant microbes have been already described more than a century ago 
(Green 1918; Green and Kestell 1920; Thom and Raper 1932). Current efforts have 
been focused in the identification of genes involved in As metabolism (Dowdle et al. 
1996), the conversion to volatile species (Qin et al. 2006), and the genetic modifica-
tion of microorganisms to improve their As tolerance (Kostal et al. 2004). Although 
the scientific studies are still scarce (Fig. 14.1), there is clear evidence that it may be 
possible to optimize bioremediation technologies. Emerging integrative approaches, 
such as (meta-)genomics, (meta-)transcriptomics, (meta-)bolomics, and (meta-)pro-
teomics studies, are powerful tools to sequence partially or completely the 
As-metabolizing bacteria genome (Maizel et al. 2015) and to study the metagenome 
in As-contaminated soil (Luo et al. 2014) and the proteomic response to As stress 
(Belfiore et al. 2013). In summary, the eruption of omic and high-throughput tech-
nologies in bioremediation represents a pool of innovative methods that allows us to 
handle deep analysis and large amounts of data in each experiment (Fig. 14.2).

Chemical and geological analysis (Rinklebe et  al. 2016) in combination with 
genomic and metagenomic techniques will provide insights into the specific roles of 
the complex biochemical pathways in the global As biogeochemical cycle. In addi-
tion, transcriptomic and proteomic techniques enable the scrutiny of the expression 
of those marker genes as indicators of enzymatic activity in response to the presence 
of As species, and metabolomic technologies inform about the As-derivative syn-
thetized during the metabolic network established (Zhu et al. 2017; see Fig. 14.2). 
Other innovative technologies are underway in this subject, such as modeling of 
attenuation and environmental fate (Wallis et al. 2010), the use of nanoparticles in 
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controlling As mobilization (Gil-Díaz et  al. 2014; Huang et  al. 2018), process 
improvement through the use of organic amendments (Beesley et al. 2014; Onireti 
et al. 2017), bioaugmentation and biostimulation techniques (Chen et al. 2017a), or 
the use of dual-sensing bioreporters (Yoon et al. 2016).

There are many perspectives of analysis to approach the problem of the As con-
tamination in soil environments. In the present chapter, we will focus on the follow-
ing items: human and environmental health, biological tools for remediation, and 
advances in analytical and detection methods.

Fig. 14.2  General scheme of analytical technologies useful on arsenic bioremediation. Genomic 
techniques are represented in the green circle, and some examples of marker genes are presented: 
ars (arsenic resistance), arr (respiration of arsenate), arx (oxidation of arsenite) or arsM (methyla-
tion of arsenic species). Transcriptomic and proteomic are represented in the yellow circle: the 
clusters of genes are transcribed (zig-zag line) and the functions of the transcribed genes are car-
tooned. ArsC reduces arsenate (As5+) to arsenite (As3+) that is exported out of the cell by ArsB. ArxA 
oxidizes arsenite to arsenate with the collaboration of ArxB assisted by an oxidized ferredoxin 
(Fdox) that is then transformed into reduced ferredoxin (Fdred). ArsM methylates arsenite to tri-
methylarsine (TMA) and the ArrAB proteins reduces arsenate into arsenite in a respiratory event. 
The blue circle represents some of the arsenic derivative metabolites produced as a consequence of 
the metabolism of arsenic compounds. Some examples are presented: arsenobetaine (1), acety-
larsenic (2), arsenite (3), arsenate (4), trimethylarsine (5) and cacodylic acid (6). All the informa-
tion obtained from the omic technologies can be used as support to develop molecular and chemical 
detection system (biosensor) and to perform predictions of environmental dynamics based on bio-
chemical cycles modeling
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14.2  �Human and Environmental Health

There is a major concern caused by environmental and health risks associated with 
the natural or anthropogenic widespread presence of As in soils and further migra-
tion to underground and surface waters worldwide. Therefore, the World Health 
Organization (WHO 2016) set up a safe limit of 10 μg/L for As concentration in 
drinking water. Dietary exposure to As, especially of inorganic As (iAs) forms, 
which are the most toxic forms, is a major concern in human health (EFSA 2014). 
Long-term exposures to As from drinking water and food can cause minor skin 
lesions, but it has also been associated with cardiovascular disease and diabetes. In 
addition, it is a known carcinogen able to cause skin, lung, bladder, liver, or kidney 
tumors, being lung cancer the most common cause of As-related mortality (WHO 
2018). The greatest As threat to public health is related to groundwater contamina-
tion. As is naturally present at hazardous concentrations in the groundwater of many 
countries, including Argentina, Bangladesh, Chile, China, India, Mexico, and the 
United States. Drinking water, crops irrigated with contaminated water and/or 
growing in contaminated soil, and food prepared with contaminated water are the 
main sources of exposure. Figure  14.3 shows ranges and boundaries in total As 
concentrations detected in different water (Fig. 14.3a) and terrestrial (Fig. 14.3b) 

Fig. 14.3  Concentrations of arsenic in water (A) and soils (B), and its general biological effects. 
Data obtained from WHO (2001) report. Abbreviations: (i) ‘anthrop.-free’ means: anthropogenic 
input unlikely; (ii) ‘geolog.’ means: volcanic/geothermal origin; (iii) ‘industry.’ means: mining/
chemical manufacture; (iv) ‘agrochem.’ means: treated with pesticides, sheep dips; (v) LC/EC 
mean: lethal/effective concentration; (vi) NOEC/LOEC mean: No observed/Lowest observed 
effect concentration; (vii) EC50/EC100 mean: concentration of a substance (toxic) at which 
50%/100% of the population are affected; (viii) LC50 means: concentration of a substance causing 
dead in a 50% of the population
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environments, indicating some reference values related to its general biological 
effect. As expected, the human-industrial activity causes a remarkable increase in 
the environmental concentrations of As, enhancing its potential impact in animal 
and plant health, even promoting severe losses in biodiversity (WHO 2018). 
Unfortunately, the majority of the data available from public surveys is still reported 
as total As, without information of the different As species present in the samples. 
Consequently, a risk assessment not considering the different species would lead to 
an overestimation of the health risk related to dietary As exposure. However, as 
reported by Yang et al. (2018) in a study performed in soils from China, the carcino-
genic risk of As was found as relatively unacceptable in both industrial and agricul-
tural regions.

Ingestion of As derivatives has been established as the main exposure pathway 
followed by dermal absorption. The general hazardous risk of noncarcinogenic As 
effects in human populations is in the following order: children, adult females, and 
adult males. However, adult females have the highest As-associated carcinogenic 
risk followed by adult males and children. For all the age classes except infants and 
toddlers, the main contributors to dietary exposure to iAs are foods belonging to 
“grain-based processed products” (in particular, wheat bread and rolls, rice, and 
rice-derived). Other food groups that contribute to iAs exposure are milk and dairy 
products (especially in infants and toddlers), vegetables, shellfish and seaweeds, 
and drinking water (Fig. 14.4). It is estimated that, in the United States and espe-
cially among the Native American communities, there are more than two million 
people who are exposed to concentrations higher than the maximum contaminant 
level allowed (>10  μg/L, according to the Environmental Protection Agency) 

Fig. 14.4    Concentration and species distribution of As in food defined as major contributors of 
inorganic As (iAs), highly toxic (yellow), organic As (usually methylated) less toxic (brown) and 
non-toxic organic As (blue). Data obtained from Cubadda et al. (2017) and Lynch et al. (2014)
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(Powers et  al. 2019). Millions more are exposed to As below this concentration 
(Amini et al. 2008), which is of concern since the evidence suggests that there is no 
safe threshold (Schmidt 2014). The consumption of drinking water with moderate 
concentration of As, which is estimated to affect about 100 million people globally, 
may lead to a broad range of diseases from skin lesions to circulatory, respiratory, 
reproductive, and neurological complications, diabetes, hepatic, and renal dysfunc-
tion, and most of them may lead to the development of malignant tumors (Chen 
et al. 2009; reviewed in Abdul et al. 2015). Thus, it is possible to distinguish the 
effects of As on human health depending on the organ system affected. Different 
symptoms may appear in different parts of the integumentary system, where the 
skin is known to be particularly susceptible, showing the initial manifestations of As 
poisoning. With higher frequency in men than in women, and usually appearing 
5–10 years after the exposure, the most common skin injuries are pigmentation, 
melanosis, and keratosis (Lindberg et  al. 2008; Rahman et  al. 2009). The brain 
appears to be a key target of As toxicity since its permeability through the blood-
brain barrier. Both acute and chronic exposures to As may lead to central and 
peripheral neuropathies, but it typically affects peripheral nerves causing symptoms 
such as paresthesia, pain, and numbness in the limbs (Vahidnia et al. 2007; Mathew 
et al. 2010). The main mechanisms related to As-induced neurotoxicity are oxida-
tive stress, disorganization of cytoskeletal structure, and neuronal apoptosis (via 
p38 and JNK kinases expression; Mundey et al. 2013; Namgung and Xia 2001).

Inhalation of As is not as common as its ingestion; however, some reports link 
mineral mining with a respiratory illness such as chronic cough, laryngitis, bronchi-
tis, and rhinitis as a consequence of As exposure (Parvez et al. 2010). Moreover, 
long-term inhalation and ingestion of iAs could have deleterious effects on cardio-
vascular system functioning (Lewtas 2007) demonstrating a strong correlation 
between As exposure and atherosclerosis (via atherogenesis) and, although still 
debated, hypertension (Simeonova and Luster 2004). Since its metabolism/detoxifi-
cation in the human body takes place in the liver, hepatic lesions may appear as a 
result of As acute and chronic exposure. Several injuries may occur depending on 
the doses of exposure. Hepatic diseases range from liver enlargement to more severe 
complications such as hepatic fibrosis, noncirrhotic portal fibrosis, cirrhosis, and 
liver cancer and sometimes lead to liver failure (Liu et al. 2002; Kapaj et al. 2006). 
Direct induction of apoptosis and oxidative stress are, again, among others, the main 
mechanisms involved in As-related hepatic toxicity and might also affect the renal 
system during the process of As elimination.

Finally, As can also affect the reproductive system causing infertility problems. 
In males, gonad dysfunction appears through a reduced synthesis of testosterone 
and cell apoptosis/necrosis (Davila-Esqueda et  al. 2012; Shen et  al. 2013). In 
females, As exposure through drinking water during pregnancy causes complica-
tions from premature delivery to fetal loss (Chakraborti et al. 2003). As a teratogen, 
As can also affect fetus development, producing growth retardation or fetal death, 
but in most cases, birth defects are accumulated leading to an increase of infant 
mortality (Wu et al. 2011).

M. d. C. Molina et al.



329

14.3  �Biological Tools for Remediation

14.3.1  �Microorganisms in As-Contaminated Soil

The heavy metal and metalloid toxicity is a consequence of their affinity for differ-
ent cellular components by forming metal-biomolecule complexes that might cause 
diverse adverse effects. At high concentrations, heavy metals and metalloids can 
inhibit essential metabolic functions and cause cell death (Hobman and Crossman 
2014; Silver and Hobman 2007). To survive in environments contaminated with 
heavy metals, microorganisms have developed resistance or tolerance to high levels 
of these metals (Ahmed 2012), and many specific genes have been detected for 
resistance to toxic ions of heavy metals. It is possible to ascribe the microorganism 
resistance mechanisms to two classes: (i) the first depends on cellular metabolic 
activity, processes of oxidation, reduction, methylation, secretion, or intracellular 
accumulation, and (ii) the second mechanism does not depend on this metabolic 
activity; it is a passive process of uptake mediated by cell wall components, exo-
polysaccharides, proteins, or siderophores (Rajendran et al. 2003).

Genes responsible for As resistance have been described in many isolated micro-
organisms (Zhu et al. 2014) and also in environmental metagenomic samples (Zhu 
et al. 2017). Arsenate (AsV) and arsenite (AsIII) enter into the cell most probably 
through phosphate (Pi) transporters and aquaglyceroporins, respectively. The more 
widely spread genes in bacteria are organized in the ars cluster (Fig. 14.2), mainly 
arranged as arsRCDAB (Stolz et al. 2006; Ben Fekih et al. 2018). The arsR gene 
encodes a transcriptional repressor that controls the whole cluster (Busenlehner 
et al. 2003) and responds to the arsenite as inducer (Wu and Rosen 1993); arsC gene 
encodes the arsenate reductase responsible for the reduction of arsenate to arsenite 
(Mukhopadhyay et al. 2002); arsAB genes encode the energy-dependent arsenite 
translocator (Rosen 1999; 2002); and gene arsD encodes a metallochaperone that 
increases affinity of the transporter ArsAB for the arsenite (Lin et al. 2007). In addi-
tion to the ars genes of As resistance, some bacteria are able to use arsenate as an 
electron acceptor or arsenite as an electron donor. The arr genes are responsible for 
the anaerobic respiratory reduction of arsenate to arsenite (Silver and Phung 2005), 
and the arsenotrophic oxidation of arsenite is a transformation that can occur in oxic 
or anoxic conditions catalyzed by arsenite oxidases encoded by either the aio clus-
ter (aerobic environments) or the arx cluster (anaerobic environments) (van Lis 
et al. 2013; Zargar et al. 2010). There are other genes with strong relevance in As 
resistance but less represented in microorganisms. Some bacteria, for example, are 
able to methylate As oxyanions with the participation of enzymes coded by arsM or 
arsH (Bentley and Chasteen 2002; Yuan et al. 2008; Ye et al. 2007). The presence of 
these genes can be detected by genetic analysis after isolation and cultivation of 
bacteria or by screening through metagenomic technologies that can analyze total 
DNA present in a given amount of soil. However, the As-resistant genes are wide-
spread in nature, and their presence is not a conclusive probe to determine a record 
of As contamination in a given environment. Nevertheless, most of As-resistant 

14  Bioremediation of Soil Contaminated with Arsenic



330

genes are organized in clusters tightly controlled by regulators that ensure their 
expression only when As compounds are present in the medium (Andres and Bertin 
2016). Thus, the environmental transcriptomic analysis can be used as a powerful 
tool to monitor bacterial activity in As-contaminated environments (Sun et al. 2004; 
Evans 2015). Besides the identification of the expression of genes related to the As 
resistance, environmental metabolomic is a comprehensive method able to detect 
metabolites released by microorganisms into the environment (VerBerkmoes et al. 
2009). Thus, metabolomic analysis is a powerful tool to detect marker analytes in 
soils or water that unequivocally can be correlated with bacterial As metabolism 
such as methylated compounds [mono-(MMA), di-(DMA), tri-methylarsenic acid, 
trimethylarsine oxide (TMAO)] or volatile compounds like trimethylarsine (TMA) 
(Bentley and Chasteen 2002; Qin et al. 2006). Moreover, the recent understanding 
of the role of some As-derivative metabolites synthetized by bacteria such as arseno-
betaine (Hoffmann et  al. 2018), arsenosugars (Xue et  al. 2018), or many other 
organoarsenic compounds (Chen and Rosen 2016) might also increase the number 
of molecules that can be used as markers of enzymatic transformation of As species 
in environmental samples.

From the above, integrating all the multiple omic technologies become crucial to 
elucidate the dynamic and complex interactions between microbial communities 
and the As biogeochemical cycle in the environment (Zhu et al. 2017). Interestingly, 
modeling approaches linking all omic data analyses will also predict the dynamics 
of As species in soil and waters providing capable tools to improve remediation 
technologies (Dunivin et al. 2018).

14.3.2  �Plant Growth-Promoting Microorganisms (PGPMOs) 
to Improve Phytoremediation Approaches

Recent studies have shown that plant microbiomes (archaea, bacteria, protists, 
fungi, and viruses) and their symbiotic interactions play important roles in plant 
growth and response to abiotic and biotic stresses, helping to adapt the plant to the 
niche occupied (Mueller and Sachs 2015; Sim et  al. 2019). In particular, plant 
growth-promoting microorganisms (PGPMOs) are a variety of microbes such as 
bacteria, cyanobacteria, and fungi including arbuscular mycorrhizal fungi (Mishra 
et al. 2017), representing 80% of the plants. PGPMOs are actively involved in plants 
growth and yield buffering the biotic and abiotic stress through diverse mechanisms, 
such as pathogen protection, phytohormone production, and nutrient acquisition 
(Vacheron et al. 2013, Ma et al. 2016, Martínez-Hidalgo and Hirsch 2017). Pathogen 
defense can be carried out directly through the production of antibiotics or enzymes 
that affect the growth of the pathogen such as β-glucanase chitinases (Martínez-
Hidalgo et  al. 2014, Martínez-Hidalgo et  al. 2017) or indirectly by inducing the 
defensive systems of plants (Martínez-Hidalgo et al. 2015). PGPMOs are important 
producers of phytohormones such as auxin, gibberellin, and cytokinin that directly 
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affect the growth of plants (Olanrewaju et al. 2017). The production of siderophores 
by the PGPMOs occurs under Fe-limiting conditions improving the uptake of Fe in 
the form of ferric ions (Fe3+) and the increase in bioavailability of other essential 
nitrates through mineralization of organic matter that improves the nutrition and 
growth (Martínez-Hidalgo et al. 2014; Johnstone and Nolan 2015; Etesami 2018). 
Different studies conducted using various bacteria have shown that PGPMOs 
improve both plant growth and tolerance to As. The As stabilization and elimination 
mechanisms in these helper microorganisms seem similar to those described in non-
symbiotic fungi and bacteria (Molina et al., in press). The number of publications 
on the successful application of endophytic microorganism inoculants to plants for 
bioremediation is extensive and increasing (Fig. 14.1). A plethora of bacteria such 
as Kocuria sp. and Bacillus sp. (Mallick et  al. 2018), Variovorax sp. and 
Phyllobacterium sp. (Mesa et al. 2017), Agrobacterium radiobacter (Wang et al. 
2011), Rhizoglomus intraradices and Glomus etunicatum (Wang et al. 2011; Wu 
et al. 2015; Spagnoletti and Lavado 2015), Enterobacter sp. (Nie et al. 2002), or 
Bacillus thuringiensis (Babu et al. 2013) have shown to be PGPMOs and offer resis-
tance to As. In addition, fungi associated with plants such as Trichoderma (Tripathi 
et al. 2017) or Piriformospora indica (Mohd et al. 2017) and arbuscular mycorrhizal 
(AM) fungi (Chen et al. 2017b) have shown to be good candidates as PGPM reduc-
ing the As stress to the host plants. Despite this fact, the problems associated with 
heavy metal and metalloid contamination, particularly with As, are numerous, and 
its investigation should not be neglected. Recently, the posttranscriptional regula-
tion of gene expression using RNA-induced silencing complexes (RISCs) mediated 
by siRNAs (noncoding RNA molecules involved gene expression regulation) has 
been considered as a potential tool to improve the plant-PGPMO interaction and 
bioremediation in heavy metal-contaminated soils. Other tools recently discovered 
are the riboswitches (RNA elements) that regulate mRNA expression and the ribo-
zymes (catalytic RNAs) able to initiate or inhibit gene expression. These new tools 
are becoming powerful for bioremediation studies providing clear mechanisms of 
gene regulations (Du Toit 2015; Furukawa et al. 2015; Topp and Gallivan 2010).

14.3.3  �Metaorganisms

Plants must be considered as a complex plurigenomic organism (metaorganism) 
formed by the plant itself, its microbiome, and the set of interspecific interactions 
that are established (Thijs et al. 2016). The microbiome is complex and is part of the 
rhizosphere, endosphere, or phyllosphere. The potential microbiome-host interac-
tions can be favorable or competitive (Novotná and Suárez 2018). Previous studies 
have shown how certain bacteria favor the formation of mycorrhizae (Duponnois 
and Garbaye 1991; Vivas et  al. 2003), while others inhibit the growth of fungal 
pathogens (Berg et al. 2005; Fikri et al. 2018). However, microbiome interactions 
are not static and change with their host at different life cycle stages or in response 
to changing environmental conditions. Microbiome interactions can evolve between 
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trophic states of pathogenesis, symbiosis, mutualism, and parasitism (Newton et al. 
2010). Despite lack of data, it is reasonable to think that an equilibrium will be 
established between favoring and competitive interactions within the complex host-
microbiome in response to abiotic factors, such as environmental stress.

To further the knowledge about microbe-host interactions in response to abiotic 
stress, our study research group studied the relationships between bacterial and fun-
gal endophytes isolated from Jasione montana L., collected from soils highly con-
taminated with As (García-Salgado et  al. 2012; Gutiérrez-Ginés et  al. 2015). 
Prokaryotes and fungi were identified by the molecular markers 16S rDNA and ITS 
rDNA, respectively. Five fungal (Curvularia sp. MC-L1, Fusarium sp. MC-A, 
Fusarium sp. MC-D, Fusarium sp. MC-J, and fungus MC-H) and eight bacteria 
(Kocuria sp. MC-K2, Arthrobacter sp. MC-D3a, Kocuria sp. MC-D3b, Pantoea sp. 
MC-J, Kocuria rosae MC-D2, Pantoea conspicua MC-K1, Arthrobacter sp. 
MC-D3a, and Rhodococcus rhodochrous MC-D1) were finally used, and a mixture 
of all endobacteria was also prepared. All fungal endophytes were tolerant to arse-
nate (Table 14.1) although the As minimum lethal concentrations (AsV-MLC) were 
lower than those for bacteria (> 300 mM). Arthrobacter sp. MC-D3a did not survive 
at arsenate concentrations higher than 7 mM (Table 14.1). The dual cultures of the 
selected fungi with single or a mixture of endophytes bacteria caused fungal pheno-
typic changes, such as growth inhibition percentages depending on the culture 
medium used (LB, Luria-Bertani agar, frequently used to bacteria and PDA, Potato 
Dextrose Agar, more suitable for fungi) (Table  14.1). Some endobacteria can 
decrease fungal development with values even above the 50% of the inhibition, 
whereas the mixture appears to increase (e.g., Curvularia sp. MC-L1 vs endobacte-
ria mixture) or reduce (e.g., Fusarium sp. MC-D vs bacteria mixture) the growth 
inhibition percentage if we compare with the effect of the single bacteria (Table 14.1). 
This ability of endophytic bacteria to modulate the growth of potentially pathogenic 
fungi has been previously described (Fikri  et  al. 2018). Other physiological and 
phenotypic changes like the suppression in the formation of sporangia (Fig. 14.5e) 
or the production of excreted compounds of unknown nature have been observed 
(Fig. 14.6). Previous reports have also shown how Enterobacter cloacae prevented 
the germination of a pathogenic fungus (van Dijk and Nelson 2000) and how 
Acinetobacter sp. reduced the endophytic fungus colony diameter and spore germi-
nation rate (Wang et  al. 2013). Moreover, we observed how fungus MC-H 
(Fig. 14.5f) produced chlamydospores (thick-walled resting spores) in the border 
with P. conspicua, as a mechanism of defense against bacteria (Li et al. 2012). When 
metaorganisms are subject to abiotic stresses, interactions are established and mod-
ulated and may change in response to the environmental stress (Fig.  14.6). Our 
results showed, during dual culture experiments, different responses of growth inhi-
bition under As conditions (Fig. 14.7). Fungus MC-H, growing with R. rhodochrous 
MC-D1 or Kocuria sp. MC-K2 under As conditions, showed how it increased 
growth (30% and 60%, respectively) but controlled the reproductive machinery, 
inhibiting the sporangia development. These patterns were opposite under favorable 
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Table 14.1  Percentage of growth inhibition of endophytes fungi therefore to growth with several 
endobacteria or endobacteria mixture isolated from J. montana. In parentheses the AsV minimum 
lethal concentration. n.a.= not available

Fungus 
MC-H

Curvularia sp. 
MC-L1 (220 
mM)

Fusarium sp. 
MC-A (220 
mM)

Fusarium sp. 
MC-D (220 
mM)

Fusarium 
sp. MC-J 
(70 mM)

LB Kocuria sp. 
MC-K2 
(450 mM)

60 53.8 0 33 n.a.

P. conspicua 
MC-K1 
(450 mM)

67 42.3 17 76 n.a.

K. rosae MC-D2 
(450 mM)

62 42.3 0 19 n.a.

R. rhodochorus 
MC-D1 
(450 mM)

60 53.8 0 0 n.a.

Anthrobacter sp. 
MC-D3a 
(7 mM)

52 40 23 0 n.a.

Kocuria sp. 
MC-D3b 
(300 mM)

0 40 0 0 n.a.

Pantoea sp. 
MC-J (300 mM)

60 54 5 14 n.a.

Endobacteria 
Mixture

69 73 13 33 0

PDA Kocuria sp. 
MC-K2 
(450 mM)

0 0 0 0 0

P. conspicua 
MC-K1 
(450 mM)

58 48 4 0 0

K. rosae MC-D2 
(450 mM)

0 0 0 0 0

R. rhodochorus 
MC-D1 
(450 mM)

0 0 0 0 0

Anthrobacter 
spo. MC-D3a 
(7 mM)

0 0 12 0 0

Kocuria sp. 
MC-D3b 
(300 mM)

0 24 0 0 0

Pantoea sp. 
MC-J (200 mM)

24 40 0 25 15

Endobacteria 
Mixture

61 52 35 27 80
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Fig. 14.5  Dual culture test in PDA at room temperature after 18 days. Inhibition of Fusarium sp. 
MC-D by Pantoea sp. MC-J (A). Fusarium sp. Control (B). Fusarium sp. MC-D hyphae invaded 
by Pantoea sp. on the border, Stained with 3, 30-diaminobenzidine tetrachloride (White et  al. 
2014) (C). Detail of Fusarium sp MC-D control (D). Fungus MC-H vs K. rosae MC-D2 with sup-
pression in the production of sporophytes (E). MC-H vs P. conspicua with growth inhibition and 
chlamydospores production (arrow) on the border (F). MC-H vs Kocuria sp. without phenotypic 
changes apparent (F). MC-H axenic culture (H)

Fig. 14.6  Fungus growing on PDA control, at room temperature, after 18 days (A), on 10 mM 
arsenate PDA (B) and dual culture test between single endophyte fungus and mixture endophyte 
bacteria (C). Arrows show unknown exolites production
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conditions, where R. rhodochrous MC-D1 or Kocuria sp. MC-K2 inhibited the 
growth of the fungus MC-H.  These results suggest that under stress conditions, 
positive interactions in detriment of the competitive ones are favored (Liancourt 
et al. 2017).

A plant bacterial endophyte can also penetrate the hyphal wall of the fungus and 
settle inside the hyphae (Fig. 14.5a, b, c, and d) suggesting a fungal growth control 
by symbiotic bacteria (Fig. 14.5 a and b). Endobacteria have been isolated from AM 
cytoplasm (Bianciotto and Bonfante 2002; Bonfante and Anca 2009; Naumann 
et al. 2010) that are able to modify gene expression and physiology of the fungus 
(Salvioli et al. 2010). These bacteria can enhance the growth of AM fungi (Adams 
et  al. 2009: Bonfante and Anca 2009) and be transmitted horizontally (Moebius 
et al. 2014) and vertically (Sharma et al. 2008; Bonfante and Anca 2009). In the 
association of AM fungi-bacteria, and Ghignone (2016) demonstrated that fungal 
infection with the endobacterium increased the fungal sporulation events, raised the 
fungal bioenergetic capacity, and elicited mechanisms to detoxify reactive oxygen 
species. Moreover, Chen et al. (2016) established a relationship between diversity 
of endobacteria and virulence of the fungus. In relation to pathogenic fungi, some 
endobacteria are responsible for fungal pathogenicity (Partida-Martinez and 
Hertweck 2005), while others modulate their antagonistic effects (Minerdi et  al. 
2008). These results indicate that bacteria living in the cytoplasm of fungi still rep-
resent an unexplored area of biology.

Despite the lack of studies on microbiomes, interactions (pathogenesis, mutual-
isms, or parasitism) depend on the specificity of the response, the type of stresses, 
and the scale of the interactions. Therefore, the idea of a metaorganism (host-
microbiome interactions), linked with the omics strategies, will provide a successful 
tool for heavy metal decontamination process.

Fig. 14.7  Dual culture test between fungus MC-H and several endophytic bacteria isolated from 
J. montana on PDA (A) and on 10 mM arsenate PDA (B)
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14.3.4  �Enzymes and Bioreactors

To overcome the inherent drawbacks of physicochemical techniques, biological 
treatments arose as adequate and cost-effective remediation alternatives for As pol-
lution. Bioremediation systems exploit microbial metabolic machinery ability, as 
whole cells or their isolated enzymes, to catalyze precipitation-dissolution pro-
cesses, sequestration reactions, or biotransformations of As and As compounds 
(Plewniak et al. 2018). Unlike physicochemical technologies, biological technolo-
gies are much more effective at very low concentration ranges, even at the picomo-
lar level (Sevcenco et al. 2015).

Many prokaryotic species are known to be able to include As within their metab-
olism. In addition, many bacterial genes involved in As metabolic pathways and 
resistance have been identified (Fig. 14.2). However, despite many microbial spe-
cies and genes encoding As-related enzymes, only some of them have been described 
in pilot or industrial scale bioremediation processes developed in bioreactors.

The use of single enzymes immobilized on solid supports increases their stability 
and permits their repeated use in consecutive cycles of treatment, improving the 
economic viability of the whole process since the cost of enzymes at industrial scale 
is usually large. Arsenate reductase from Pseudomonas alcaligenes cross-linked 
immobilized on alginate beads has been used for the remediation of water contain-
ing arsenate at trace levels (< 1 ppm), yielding a biosorption capacity of 96.2 μg/g 
(Banerjee et al. 2017). Large enzymes such as ferritin, from the hyperthermophilic 
archeon Pyrococcus furiosus, showed a remarkable capacity to bind arsenate by 
interacting with the iron oxyhydroxide encapsulated inside ferritin nanocages 
(Sevcenco et al. 2015). This biosorption process is attractive for scaling up due to 
the developed heterologous overexpression of the gene that encodes ferritin from P. 
furiosus in Escherichia coli. This protein showed high thermostability and the abil-
ity to reuse the biosorbent.

Besides immobilized isolated enzymes, whole-cell biomass can be used as effec-
tive biosorbent for As sequestration from water. Biosorption presents, as a benefit, 
high elimination performance, low cost and minimum use of chemical and biologi-
cal sludge. This technology can be applied either as living or as dead cells without 
clear evidence of which of the two alternatives is more effective since the results are 
sometimes contradictory and the biosorption mechanisms are complex and not 
clearly defined (AsadiHaris et al. 2018; Hlihor et al. 2017; de Bashan and Bashan 
2010). However, the use of dead cells has a series of advantages, such as that the 
biomass can be reused, the system can be operated under extreme pH conditions 
(favorable for sorption but not compatible with living cells), and it is not necessary 
to use any growth media (AsadiHaris et al. 2018).

The ex situ bioremediation of As-polluted water, sludge, and soil can be carried 
out in bioreactors using a wide range of microorganisms harnessing their metabo-
lism to perform a variety of transformations. For example, sulfate-reducing bacteria 
(SRB) are known to use sulfate as the terminal electron acceptor for their metabo-
lism and, thus, produce insoluble metal or metalloid sulfides. For As, the removal 
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efficiency by the action of SRB depends not only on the specific microbial strain, 
but also on the presence of different carbon sources and other metals within the 
medium. A SRB consortium isolated from an antimony mine slurry achieved up to 
96% As (III) and As (V) removal when Fe (II) was present and ethanol as carbon 
source was added in the anaerobic pilot bioreactor (Liu et  al. 2018). Higher As 
removal efficiency, up to 99.8%, can be reached in a continuous attached growth 
reactor in the absence of oxygen with simultaneous nitrate depletion using a bacte-
rial consortium obtained from a sewage treatment plant (Shakya and Ghosh 2018). 
In summary, the use of controlled bioreactors is an efficient approach to remove As 
contamination reducing time consumption although is more expensive than bio-
sorption techniques.

14.4  �Advances in Analytical Methods

14.4.1  �Sample Treatment Methods for Speciation Analysis

The making of adequate decisions for the recovery of systems contaminated with 
arsenic involves the use of appropriate techniques and protocols that allow us to 
make a precise approximation of the concentration and As species present. The As 
speciation analysis in soils requires the application of single and sequential extrac-
tion methods. Single extraction methods are generally preferred due to their sim-
plicity and efficiency for mobility studies of toxic elements, which is related to the 
environmentally accessible metal fraction when soil conditions change, and their 
potential bioavailability, related to the easily accessible metal fraction to plants and 
soil microorganisms. For this purpose, weak neutral salt solutions (CaCl2 or NaNO3) 
are used for the leaching of heavy metals present in exchangeable fractions in soils 
(Alvarenga et al. 2013), whereas ethylenediaminetetraacetic acid (EDTA) and ace-
tic acid solutions are used to estimate the possible bioavailability of heavy metals 
from environmental samples to living organisms (García-Salgado and Quijano 
2016). Ultrasonic and microwave energy have been applied to reduce the extraction 
time and the sample-extractant consumption (Arain et al. 2008; De la Calle et al. 
2013; García-Salgado and Quijano 2016; Li et al. 2014; Relić et al. 2013; Wang 
et al. 2015). García-Casillas et al. (2014) obtained quantitative recoveries for BCR 
(Community Bureau of Reference) 486 and 700, reducing extraction times from 
hours to a few minutes.

For As extraction, the use of EDTA can be insufficient to remove both cationic 
and anionic metal species in contaminated soils. It has been proposed the combina-
tion of this solvent with organic reducing agents, such as oxalic, ascorbic, citric, or 
malic acids, or their salts, which can also be used by their own (Nguyen Van et al. 
2017; Wei et al. 2018), or with dithionite (Wang et al. 2017b). Martínez-Sánchez 
et al. (2011) have proposed dithionite-citrate buffered with sodium bicarbonate as 
the most effective solvent for As extraction from soils affected by old mining 
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activities. Fleming et al. (2013) used ammonium acetate to study the extractability 
and bioavailability of As in historically contaminated orchard soil. The hydroxyl-
amine hydrochloride, which is a solvent commonly used in one of the steps of the 
sequential extraction methods, can also be used for single As extraction in soils 
(Palumbo-Roe et al. 2015). Another solvent applied for As extraction is 1 M ammo-
nium nitrate, according to the German DIN 19730:1997, which describes a method 
for the extraction of readily available trace elements from soils by shaking 
(Antoniadis et al. 2017). Finally, phosphoric acid and phosphate mixtures have been 
also used for As extraction from soils, to evaluate the As exchangeable fraction 
(García-Salgado et al. 2012; Sadee et al. 2016), as well as ammonium sulfate for 
weakly retained As (Moreno-Jiménez et al. 2010).

Regarding sequential extraction methods, they are used for the partitioning of 
heavy metals into different soil fractions: the water soluble and exchangeable, 
bound to carbonates, to Fe/Mn oxides, to organic matter, and the residual fraction 
(Tessier et al. 1979). This procedure was simplified by the BCR and later modified 
by Rauret et al. (1999). The main shortcomings from these conventional methods 
are high extraction time and reagent consumption, lack of selectivity, and poor 
reproducibility. Improvements on them are focused on (a) acceleration of batch 
leaching by sonication or microwave treatment (Rusnák et al. 2010), (b) reduction 
of sample handling by the application of continuous flow techniques (Savonina 
et al. 2012), (c) reduction of matrix effect by matrix separation or matrix matched 
calibration, and (d) application of internal standardization (Heltai et al. 2015).

Alternative sequential extraction methods have been developed for As fraction-
ation in soils, because of the anionic nature of As ions unlike the heavy metals 
(Javed et al. 2013; Kreidie et al. 2011; Larios et al. 2012; Shiowatana et al. 2001, 
Tan et al. 2018; Wenzel et al. 2001). For example, several of these schemes have 
been proposed to replace the acetic acid solution by alkaline medium, for releasing 
As from the exchangeable fraction (Javed et al. 2013; Larios et al. 2012; Shiowatana 
et al. 2001; Tan et al. 2018). Also, alkaline solutions are used for dissolving the As 
associated with Fe/Al oxides/hydroxides (Larios et al. 2012; Shiwatana et al. 2001; 
Wang et al. 2017c), reporting higher percentages than those obtained with hydrox-
ylamine solution. Several of these procedures increase the number of fractions (to 8 
or 10), in order to differentiate between the As bound to amorphous or crystalline 
Fe, Al, and Mn oxyhydroxides, and therefore reduce the As bound to the residual 
fraction. In this way, authors reported the use of oxalate, citrate, or ascorbic acid 
solutions (Javed et al. 2013; Kreidie et al. 2011; Larios et al. 2012; Wenzel et al. 
2001).

Conventional and As-specific sequential extraction methods have been applied to 
highly polluted soils (Kalyvas et al. 2018; Kim et al. 2014; Larios et al. 2013; Moreno-
Jiménez et al. 2010; Wang et al. 2017c). The authors reported As contents lower than 
10% in bioavailable fractions (soluble + exchangeable), while As was predominantly 
bound to amorphous and crystalline Fe oxyhydroxides (up to about 50%). 
Nevertheless, the absence of commercially available reference materials certified in 
As concentrations bound to the different soil fractions makes the validation of this 
kind of methods difficult, so recovery studies must be performed (Larios et al. 2013).
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Apart from chemical methods, other extraction procedures such as diffusive gra-
dients in thin-film technique (DGT) have proved to be effective for the determina-
tion of the bioavailability of trace elements in flooded soils (Zhang et  al. 2018). 
Also, the effect of nanomaterials on As volatilization and extraction from this kind 
of soils has been studied (Huang et al. 2018).

14.4.2  �Biosensors in as Analytical Methods

A biosensor is a device that presents a combination of biotechnology and microelec-
tronics (Gronow 1984). It comprises (i) a biological component such as an enzyme, 
an antibody, a DNA, or a whole cell; (ii) a transducer, e.g., electrochemical, optical, 
or thermal; and (iii) a signal amplifier. Biosensors can be designed to detect a mul-
titude of molecules, e.g., xenobiotics, pesticides, heavy metals, and many other pol-
lutants (Saleem 2013). Various types of biosensors of As species (more commonly, 
arsenite) have been developed, and they can be grouped into whole-cell-based bio-
sensors and cell-free-based biosensors (Kaur et al. 2015; Pothier et al. 2018).

The design of whole-cell As biosensors is mainly based on the ArsR transcrip-
tional regulator that control the expression of the Pars promoter controlling the ars 
cluster. This protein is able to recognize arsenite or arsenate (Busenlehner et  al. 
2003; Wu and Rosen 1993) allowing the expression of a gene fusion of the Pars 
promoter and some reporter genes encoding β-galactosidase (lacZ) (Date et  al. 
2010; Cortés-Salazar et al. 2013; Huang et al. 2015), luciferase (Bakhrat et al. 2011; 
Sharma et al. 2013; Hou et al. 2014), green fluorescent protein (Chen et al. 2012; 
Truffer et al. 2014; Li et al. 2015; Ravikumar et al. 2017; Aye et al. 2018), or carot-
enoids (Fujimoto et al. 2006; Yoshida et al. 2008). However, some As biosensors are 
based on proteins encoded by the ars cluster like the ArsA-ArsD protein pair able to 
recognize As(III) (Liu et al. 2012).

The cell-free biosensors of As are primarily based on the ability of different bio-
molecules (DNA, proteins, aptamers, or nanomaterials) to interact with some As 
species. DNA can interact with As by electrostatic forces through the grooves of the 
double helix or by intercalation between the stacked base pairs of native DNA 
(Arora et al. 2007). Although these biosensors are able to detect the very low amount 
of As, their specificity is low (Liu and Wei 2008; Solanki et al. 2009). Some proteins 
have also shown their ability to sense As through a mechanism based on the affinity 
of some As oxyanions to bind and oxidize the sulfur groups of the proteins (Sarkar 
et al. 2010; Sanllorente-Méndez et al. 2012; Irvine et al. 2017). Aptamers are oligo-
nucleotide or peptides modified to bind specifically a selected number of analytes. 
Some As aptamers are ultrasensitive to arsenite in aqueous detection, and they base 
their detection on gold nanoparticle aggregation (Wu et al. 2012; Wu et al. 2013; 
Pan et  al. 2018). Nanomaterial-modified electrode interfaces for electrochemical 
sensing of As are based on unique chemical, physical, and electronic properties of 
the nanoparticles, enhancing the sensitivity, selectivity, field portability, and multi-
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plexed detection capability of these kind of biosensors (Song et al. 2016; Vaishanav 
et al. 2017; An and Jang 2017; Kempahanumakkagari et al. 2017).

A high number of As biosensors have been developed in the last few years to 
detect As species in diverse environments. However, some limitations such as sta-
bility, sensibility, or specificity are still pending for solutions. New technologies 
such as synthetic biology or surface plasmon resonance are called to bypass some 
of the limitations of the current As biosensors (Fig. 14.7) (Kaur et al. 2015).

14.5  �Conclusion

As speciation analysis requires the application of extraction procedures. In soils or 
sediments, this is carried out through sequential extraction methods, which permit 
discrimination between different As solid-phase associations. These analytical 
approaches allow us to inquire into soil composition and determine which remedia-
tion technique is more appropriate. Today, it is known that the interactions of plants 
with their microbiome and particularly with the PGPMOs will improve the effec-
tiveness of plant-metaorganism. Therefore, through the resources that nature offers, 
plant endophytes and PGPMOs from As-tolerant plants can be used to improve 
bioremediation approaches. Microbiome interactions depend on the specificity of 
the response, the type of stress, and the scale of the interactions. Recent tools dis-
covered, such as riboswitches and posttranscriptional regulation of gene expression, 
have been considered as potential tools to improve plant-PGPMO interactions. 
Other technologies such as biosensors, synthetic biology, or surface plasmon reso-
nance have been developed to detect efficiently As species in diverse environments. 
Chemical and geological analysis and the idea of metaorganisms (host-microbiome 
interactions) linked with omics strategies will provide successful eco-friendly tools 
to remove As from contaminated environments.
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