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Abstract: Multicopper oxidases (MCOs) share a common catalytic mechanism of activation by oxygen
and cupredoxin-like folding, along with some common structural determinants. Laccases constitute
the largest group of MCOs, with fungal laccases having the greatest biotechnological applicability due
to their superior ability to oxidize a wide range of aromatic compounds and lignin, which is enhanced
in the presence of redox mediators. The adaptation of these versatile enzymes to specific application
processes can be achieved through the directed evolution of the recombinant enzymes. On the other
hand, their substrate versatility and the low sequence homology among laccases make their exact
classification difficult. Many of the ever-increasing amounts of MCO entries from fungal genomes
are automatically (and often wrongly) annotated as laccases. In a recent comparative genomic study
of 52 basidiomycete fungi, MCO classification was revised based on their phylogeny. The enzymes
clustered according to common structural motifs and theoretical activities, revealing three novel
groups of laccase-like enzymes. This review provides an overview of the structure, catalytic activity,
and oxidative mechanism of fungal laccases and how their biotechnological potential as biocatalysts
in industry can be greatly enhanced by protein engineering. Finally, recent information on newly
identified MCOs with laccase-like activity is included.

Keywords: multicopper oxidases; laccases; basidiomycete fungi; catalytic activity; applications;
directed evolution; classification

1. Laccases: General Aspects

Laccases, EC 1.10.3.2, are oxidoreductase enzymes with polyphenol oxidase activity
that belong to the multicopper oxidase superfamily (MCO), which also includes ascorbate
oxidases (EC 1.10.3.3) and ferroxidases (EC 1.16.3.1), among others. Laccase activity de-
pends on several catalytic copper ions for the oxidation of the substrate and the reduction
of O2 to H2O as a by-product of the catalysis [1]. Originally discovered in the exudates of
the oriental lacquer tree Toxicodendron vernicifluum (formerly Rhus vernicifera) [2], laccases
have been identified in fungi [3], bacteria [4] or even insects [5], making them one of the
most ubiquitous enzymes in nature. Laccases are involved in several physiological roles. In
bacteria, they contribute to pigment synthesis, sporulation and protection against oxidative
stress and UV light, while plant laccases are implicated in cell wall lignification, as well as
in damage and stress response [6]. In insects, laccases participate in cuticle sclerotization
and pigmentation [5,6]. As for fungal laccases, in addition to their involvement in various
functions such as defense/protection, virulence or pigment formation, their most studied
role is in lignin biodegradation [7,8]. In fact, fungal laccases have traditionally been much
more widely studied than their counterparts, particularly those secreted by white-rot ba-
sidiomycetes [9]. Some of these laccases have the highest redox potentials described so
far [10,11], which gives them superior oxidation capacities on a wider range of substrates
and, thus, a higher applicability as biocatalysts. With this in mind, this review focuses on
fungal laccases, with special emphasis on basidiomycete laccases. We give an overview of
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their structure, catalytic properties and biotechnological applicability, particularly address-
ing their heterologous expression and engineering to obtain tailor-made biocatalysts, and
provide the recent advances made by our group in the classification and characterization of
enzymes with laccase-like activity.

1.1. Structure

Fungal laccases are mostly extracellular glycoproteins of approximately 60–70 kDa
with diverse carbohydrate moieties whose content typically varies from 10% to 25%, al-
though higher saccharide contents have also been reported [12]. Alike other MCOs, they
are typically monomeric enzymes whose polypeptide chain folds in three cupredoxin-type
domains (D1, D2 and D3) formed by β-sheets arranged in a classical Greek-key barrel
structure (Figure 1). Two conserved disulphide bridges stabilize the folding, connecting
D1 with D2 and D1 with D3 [13,14]. The functional unit of fungal laccases includes four
catalytic coppers covalently coordinated to the protein backbone by ten histidine residues
and one cysteine residue [7].
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sponsible for the typical blue color associated with these enzymes, resulting in a pro-
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coupling constant in electron paramagnetic resonance (EPR). 

• Type 2 copper site (T2): composed of one copper coordinated by two histidines, it 
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• Type 3 copper site (T3): this site is a binuclear center with two catalytic coppers co-
ordinated by six histidine residues (three for each T3 copper atom). It is spectroscop-
ically characterized by absorption at 330 nm and the absence of an EPR signal due to 
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Figure 1. Cartoon representation of the crystal structure of the laccase from basidiomycete PM1
(Coriolopsis sp.) (PDB 5ANH, [15]) with the catalytic coppers depicted as orange spheres and the two
disulphide bridges as yellow sticks. A zoom-up of the active site shows the histidine (in blue) and
cysteine (in wheat) residues coordinating the four catalytic coppers and the conserved acidic residues
assisting the catalysis (in purple).

The catalytic copper atoms are classified based on their spectroscopic characteristics [16,17]:

• Type 1 copper site (T1): located in D3, it is coordinated by two histidine residues
and one cysteine residue in a trigonal coplanar arrangement. The Cu-S(Cys) bond is
responsible for the typical blue color associated with these enzymes, resulting in a
pronounced absorption in the visible region at 600 nm and a small parallel hyperfine
coupling constant in electron paramagnetic resonance (EPR).

• Type 2 copper site (T2): composed of one copper coordinated by two histidines, it
shows no absorption in the visible spectrum but reveals paramagnetic properties.

• Type 3 copper site (T3): this site is a binuclear center with two catalytic coppers coordi-
nated by six histidine residues (three for each T3 copper atom). It is spectroscopically
characterized by absorption at 330 nm and the absence of an EPR signal due to the
antiferromagnetic coupling of the copper pair.
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The T2 and T3 coppers together form the trinuclear cluster (TNC), connected to the
T1 site via a conserved His-Cys-His triad (two histidine ligands of the T3 coppers and the
cysteine ligand of the T1 copper) [18].

The binding pocket, situated near the catalytic T1 site, is determined by several flexible
loops that vary in size, shape and amino acid composition among laccases. This amino acid
diversity is important for determining the protein–substrate interactions that ultimately
define the broad oxidation capabilities of these enzymes [15,19–21].

1.2. Catalytic Activity

Fungal laccases exhibit a broad substrate spectrum. They catalyze the oxidation of sev-
eral organic compounds like o- and p-substituted phenols and aryl amines, N-heterocycles,
or different synthetic organic dyes [22–24]. These substrates undergo monovalent oxidation
at the T1 site, and electrons are swiftly transferred via the His-Cys-His triad pathway to the
TNC, where O2 is reduced to form two H2O molecules (Figure 2).
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Figure 2. Electron transfer from the reducing substrate in the catalytic T1 site to TNC of laccases. The
histidine (blue) and cysteine (wheat) residues coordinating the four catalytic coppers (depicted as
spheres) and the conserved acidic residues involved in electron-proton transfer (purple) are shown in
PM1 laccase structure (PDB: 5ANH) (adapted from De Salas and Camarero, 2021 [25]).

The O2 reduction mechanism has been studied as common to all MCO members. The
catalytic cycle starts with the four catalytic coppers fully oxidized in a resting state. In
this state, the T3 coppers are hydroxide-bridged, and the T2 copper is bonded with an
external hydroxo ligand [17]. As substrate oxidation occurs at the T1 site, electrons are
transferred internally until all four catalytic coppers are fully reduced, reaching the reduced
stage (Figure 3). In the next catalytic step, the TNC reacts with O2, and the copper ions are
oxidized two by two, in two consecutive steps. First, a peroxide intermediate is formed
with two oxidized coppers (T2 and one T3). Next, the reductive cleavage of the O–O bond
occurs via the transfer of two electrons from the remaining reduced coppers (one T3 and
T1), assisted by proton donation from carboxylate residues near the TNC, to form the
native intermediate. This state quickly reverts to the fully reduced form by the oxidation of
four additional substrate molecules, while in the absence of more molecules of reductants,
the native intermediate slowly decays to the resting oxidized form [17]. Three conserved
acidic residues assist the catalysis. An aspartic acid inside the binding pocket (Asp205
according to PM1 laccase numbering, [15]) participates together with the His455 ligand in
the concerted electron-proton transfer for the oxidation of phenols at the T1 site [26], while
two conserved aspartates near the TNC (Asp77 and Asp453, PM1 laccase numbering) act
as proton donors during the reductive cleavage of peroxide [17].



Biomolecules 2023, 13, 1716 4 of 21

Biomolecules 2023, 13, x FOR PEER REVIEW 4 of 22 
 

study has suggested a scheme of oxygen reduction in the TNC that differs in some details. 
This alternative model differs in the symmetry of the peroxide’s locations, the positions 
of the two oxygen ligands, and the sequence of oxidation for the T2 and T3 ions. The var-
iations also extend to details of substrate binding and the release of products from the 
TNC [28]. 

 
Figure 3. Reaction mechanism of laccases from the reduction of the T1 copper by substrate, the elec-
tron transference to the TNC and O2 reduction (adapted from Jones and Solomon et al., 2015 [17]). 

The reduction potential (E°) of the T1 site determines the oxidation efficiency on sub-
strates with high ionization potentials [29]. Based on this, laccases may be divided into 
low (E° < 500 mV), medium (E° 500 to around 700 mV), and high (from >720 mV) redox 
potential enzymes; the latter are mostly isolated from basidiomycete fungi [30]. In low-
redox-potential laccases, the reduction of T1 copper by the substrate is the rate-limiting 
step of the reaction [17]. By contrast, the higher redox potential of T1 in fungal laccases 
decreases the rate of the intramolecular electron transfer (IET) for the reduction of the 
native intermediate to the fully oxidized form. However, the IET is faster enough com-
pared with the decay rate of the native intermediate, which makes this state catalytically 
relevant, enabling a fast turnover [31].  

Despite the extensive knowledge about these enzymes, the structural determinants 
that modulate their redox potential are yet not completely elucidated. The most accepted 
significant contribution to the T1 copper E° is the presence or absence of the fourth axial 
ligand, which produces a perturbation of the geometry of this site [32,33]. In plant and 
bacterial laccases, a methionine occupies this position, providing a weak bond with the 
T1 copper, resulting in a distorted tetrahedral geometry associated with low-redox-poten-
tial laccases. Conversely, in fungal laccases, the axial position is mostly occupied by a non-
coordinating phenylalanine or leucine residue giving rise to a trigonal planar geometry 
associated with laccases with a higher redox potential [16,34,35]. 

Other factors suggested to modulate the E° are not necessarily ascribed to the nature 
of the T1 copper ligands. For instance, side chains of non-polar residues located in the 
loops delineating the substrate cavity or in close proximity to T1 copper provide a hydro-
phobic environment important for tuning the E° of laccases [36]. Similarly, non-covalent 

Figure 3. Reaction mechanism of laccases from the reduction of the T1 copper by substrate, the
electron transference to the TNC and O2 reduction (adapted from Jones and Solomon et al., 2015 [17]).

In laccases, electron transfer to T1 and TNC is governed by an inner and second sphere
of residues surrounding the T1, i.e., the copper-binding residues and several amino acids
not directly bound to T1 copper, respectively. Both are known to modulate the oxidative
properties [27]. Although this MCO catalytic oxidation is widely adopted, a recent study
has suggested a scheme of oxygen reduction in the TNC that differs in some details. This
alternative model differs in the symmetry of the peroxide’s locations, the positions of the
two oxygen ligands, and the sequence of oxidation for the T2 and T3 ions. The variations
also extend to details of substrate binding and the release of products from the TNC [28].

The reduction potential (E◦) of the T1 site determines the oxidation efficiency on
substrates with high ionization potentials [29]. Based on this, laccases may be divided
into low (E◦ < 500 mV), medium (E◦ 500 to around 700 mV), and high (from >720 mV)
redox potential enzymes; the latter are mostly isolated from basidiomycete fungi [30]. In
low-redox-potential laccases, the reduction of T1 copper by the substrate is the rate-limiting
step of the reaction [17]. By contrast, the higher redox potential of T1 in fungal laccases
decreases the rate of the intramolecular electron transfer (IET) for the reduction of the
native intermediate to the fully oxidized form. However, the IET is faster enough compared
with the decay rate of the native intermediate, which makes this state catalytically relevant,
enabling a fast turnover [31].

Despite the extensive knowledge about these enzymes, the structural determinants
that modulate their redox potential are yet not completely elucidated. The most accepted
significant contribution to the T1 copper E◦ is the presence or absence of the fourth axial
ligand, which produces a perturbation of the geometry of this site [32,33]. In plant and
bacterial laccases, a methionine occupies this position, providing a weak bond with the T1
copper, resulting in a distorted tetrahedral geometry associated with low-redox-potential
laccases. Conversely, in fungal laccases, the axial position is mostly occupied by a non-
coordinating phenylalanine or leucine residue giving rise to a trigonal planar geometry
associated with laccases with a higher redox potential [16,34,35].

Other factors suggested to modulate the E◦ are not necessarily ascribed to the nature
of the T1 copper ligands. For instance, side chains of non-polar residues located in the loops
delineating the substrate cavity or in close proximity to T1 copper provide a hydrophobic
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environment important for tuning the E◦ of laccases [36]. Similarly, non-covalent inter-
actions, such as hydrogen bonding networks and dipole environment near T1 copper, or
interacting directly with T1 ligands, influence their conformation and the E◦ value [36,37].
Interactions that affect the positioning of the α-helix containing the His 455 ligand (PM1L
numbering, Figure 2 [15]) can cause an elongation of the coordination distance between the
T1 copper and His455, potentially increasing the electron deficiency of T1 and therefore
increasing the value of the E◦ [35,38].

1.3. Redox Mediators

The oxidative capabilities of laccases can be enlarged in the presence of certain low-
molecular-weight compounds that act as redox mediators. These compounds serve as
laccase substrates, and their oxidation by the enzyme generates diffusible radicals. These
radicals are capable of oxidizing other molecules that are recalcitrant to direct oxidation by
the enzyme due to their high-redox-potential (Figure 4) or complex substrates that are not
readily accessible to the enzyme binding pocket [39,40]. After the first description of ABTS
as a mediator of laccases [41], other efficient artificial mediators have been deemed those
generating nitroxyl radicals such as 1-hydroxybenzotriazole (HBT) [42], violuric acid [43]
or 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO) [44]. The combination of
laccases with these molecules in the so-called “laccase-mediator systems” has proved
to efficiently enlarge the substrate repertory of the enzymes and their efficiency for the
oxidation of recalcitrant molecules or complex polymers [45–48]. However, despite their
demonstrated advantages, the high cost of some of these mediators and the potential
release of toxic derivatives are drawbacks to their application. In this regard, certain natural
phenolic compounds, derived from lignin biodegradation or fungal metabolism, can act as
laccase mediators. Thus, they represent a sustainable alternative to the aforesaid artificial
compounds [49–51]. For instance, certain lignin-derived phenols that are easily obtained
from industrial biomass waste [52] have been shown to be effective in the oxidation of
recalcitrant synthetic organic dyes [53], polycyclic aromatic hydrocarbons [54], or lignin
and lipids in paper pulps [52].
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2. Multicopper Oxidases Reclassification

Laccases are the largest and widest distributed group of MCOs, with the most diverse
functions in nature. As regards fungal laccases, they share conserved structural determi-
nants and a common capability to oxidize aromatic compounds and lignin [55,56]. Several
studies have been focused on identifying distinctive and concise ways for classifying
them—for instance, by grouping laccases according to specific protein residues such as
the amino acid occupying the axial ligand position [57], as well as by differentiating them
according to their substrate specificity [58]. Sequence homology-based approaches have
shed light on the common structural features of this MCO family. Kumar and co-workers
suggested the first amino acid signature sequences for distinguishing laccases from other
MCOs, reporting a total of four motifs (L1–L4) that comprise the copper ligands and con-
tiguous residues [55]. Later on, a more precise classification of laccases and other MCO
families was redrawn based on phylogenetic analysis [59].

The phylogeny of fungal laccases has been addressed in different studies revealing
the genetic complexity of these enzymes, with multiple laccase genes evolved through
duplication-divergence events [60] or the suggestion of clustering patterns with respect to
enzyme properties [61]. These efforts have contributed enormously to a better understand-
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ing of laccases, but their overlapping substrate specificity and poor sequence homology still
make an accurate classification difficult. In addition, continuous advancements in massive
genome sequencing are yielding new enzyme sequences, with many new MCO entries
automatically annotated as laccases that, in most cases, still await experimental verification.

On the other hand, the knowledge on fungal laccases has been, for many years, biased
to those enzymes encoded by white-rot basidiomycetes from the Polyporales order due to
their role in lignin biodegradation during wood decay [9]. In this regard, the recent study of
Savinova and co-workers provides a detailed evolutionary analysis focused on Polyporales
laccases. They suggest a common single ancestral gene for all Polyporales laccases, which
have evolved from this gene via extensive duplications, in parallel with the evolution of
angiosperms [62]. The study of other basidiomycete orders such as Agaricales, Russulales,
or Boletales has been relegated to second place, even when these fungi can colonize different
lignocellulosic materials, constituting valuable sources of laccases and other types of MCOs.
In a recent comparative genomic study of 52 basidiomycete fungi from various orders
and with diverse lifestyles, we made a revisited classification of MCOs in an attempt to
better understand the role of laccases in lignocellulose degradation and the distinctive
features of laccase-like enzymes respecting other MCO members [63]. The phylogenetic
analysis revealed a total of 649 MCO enzymes assembled in different clusters according
to their conserved structural motifs and theoretical activities as: Ascorbate Oxidase (AO),
Ferroxidase (FOX), Laccase-Ferroxidase (LAC-FOX) and Laccase sensu stricto (LAC). In
addition, three novel clusters of laccase-like enzymes separated but related to laccases
sensu stricto were described as: Novel Laccase (NLAC), Novel MCO (NMCO) and Novel
Laccase with potential ferroxidase activity (NLAC-FOX) (Figure 5). The more relevant
properties of the different MCO groups are described below.
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Ascorbate Oxidases (AOs). They were scarcely found in the 52 fungal genomes
studied. Only four of them harbored AO genes (only one per genome), with the exception
of Schizophyllum commune [63]. AO enzymes typically catalyze the oxidation of ascorbic acid
to dehydroascorbate [64]. However, their substrate specificity might not be that restricted,
since their activity towards phenolic substrates has been reported [65]. In nature, AOs



Biomolecules 2023, 13, 1716 7 of 21

seem to influence growth and regulate the redox state [66]. Structurally, these enzymes lack
disulphide bonds that connect and stabilize crupredoxin domains in other MCOs. They
have a methionine in the position of the fourth axial ligand of T1 copper and a leucine
instead of the commonly conserved aspartic acid in the 205th position in laccases (PM1L
numbering, PDB 5ANH).

Ferroxidases (FOXs). These enzymes were identified in every species of the 52 fungal
genomes studied, having on average one FOX gene per genome, except for three genomes
which had none [63]. Their natural activity is related to iron uptake and metal home-
ostasis [67]. Acquisition of ferrous ion oxidation in these MCOs relies on the presence
of a specialized Fe (II)-binding site composed of three acidic residues equivalent to the
Glu185, Asp283 and Asp409 of the extensively studied ferroxidase Fet3p from S. cerevisiae.
Additionally, in Fet3p, Glu185 and Asp409 are part of the electrical wire that connects Fe (II)
to T1 copper by means of hydrogen bonds with the two histidine ligands of T1, constituting
a pathway for electron transfer from the iron to the T1 site [68,69].

Laccase-Ferroxidases (LAC-FOXs). MCO enzymes with hybrid laccase and
ferroxidase activities have been identified and characterized in the Tremellomycetes
Cryptococcus neoformans fungus [70,71], and in Agaricomycetes belonging to Polyporales
species, such as Phanerochaete chrysosporium and Phanerochaete flavido-alba [19,72] or Rus-
sulales, e.g., Heterobasidion annosum s. l. [73]. This dual activity relies on the presence
of some of the aforesaid catalytic determinants (Glu185, Asp283 and Asp409) allowing
ferroxidase activity in ferroxidase Fet3p from S. cerevisiae [68,69]. For instance, the MCO1
laccase from P. chrysosporium harbors two acidic residues equivalent to Glu185 and Asp409.
The enzyme has been proven to show efficient ferroxidase activity similar to that of Fet3p,
while it oxidizes typical laccase substrates like aromatic amines, ABTS and phenols [19].
Additionally, the P. flavido-alba enzyme, holding only the equivalent residue to Asp183 [73],
exhibited ferroxidase activity together with laccase activity on aryl amines and phenols [72].
Similarly, the MCO of C. neoformans showed also hybrid activity [70,71], although it only has
the equivalent to Asp409 [73]. By contrast, a novel LAC-FOX from Heterobasidion annosum
s. l. displayed good laccase activity but no Fe (II) oxidation activity, despite holding the
residue equivalent to Asp409. This LAC-FOX enzyme only displayed ferroxidase activity
after the full restoration of the three acidic determinants. The variant also retained activity
on a broad spectrum of laccase substrates [73].

The LAC-FOX cluster was already described in previous phylogenetic studies [59], and
later on confirmed by Ruiz-Dueñas and co-workers [63]. A more recent study suggested
this MCO family may be subdivided into two differentiated phylogenetic subgroups based
on the presence/absence of some of the acidic determinants. One subgroup is comprised
of enzymes that conserve equivalents to Glu185 and Asp409 residues and show efficient
ferroxidase activity, while proteins from the second group only show the equivalent to
Asp409 [73].

In the study of 52 genomes, it was concluded LAC-FOX enzymes mainly appeared in
wood-rotting fungi. One LAC-FOX was found on average in every white-rot and brown-rot
species regardless of whether they belong to Polyporales, Agaricales or Boletales [63].
Structurally, they have a conserved leucine in the position of the fourth axial ligand of the
T1 site, one disulphide bond and normally a phenylalanine replacing the acidic residue at
the 205th position. The carboxylic side-chain of the acidic residue is considered to assist the
deprotonation of phenolic compounds during their oxidation [26], and it has been related
as well to facilitate the substrate binding of amines [74].

Laccases sensu stricto (LAC). This group constitutes the largest cluster of MCOs,
with a total of 465 sequences out of the 649 MCOs found in the 52 fungal genomes [63].
In general, the highest number of laccases were found in forest-litter degrading species
(around 20 laccase genes in several species). This trend might be related to the more
complex and heterogeneous substrates that forest-litter degrading fungi living in soil
have to face. Moreover, some wood decayers belonging to white-rot species also had an
important number of laccases, whereas brown-rot basidiomycetes presented a significantly
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reduced number of laccases. Most of the enzyme sequences had a phenylalanine or leucine
residue occupying the putative fourth axial ligand of T1 Cu, a typical feature of laccases
with higher redox potential [16,34,35]. Most laccases conserved the typical acidic residue of
Polyporales laccases in the 205th position (PM1L numbering, PDB 5ANH), although some
exceptions were found in laccases from Agaricales, Boletales or Russulales orders. Finally,
all laccases kept the two disulphide bonds typical of canonical laccases.

Novel Laccases (NLACs). In the 52-fungal-genome study, up to 28 laccase sequences
from different species were grouped in a separated cluster from laccases sensu stricto,
with 1-2 proteins from different species gathering together. The NLACs were confined
to Agaricales and Russulales species, whereas none were identified in the Polyporales
species [63]. As signature structural characteristics of NLACs, they hold a conserved
leucine in the position of the fourth axial ligand of T1 copper and exhibit an arginine
residue instead of the conserved aspartic acid at the 205th position found in LAC. The
amino-acid residues delimiting the substrate-binding pocket in NLAC enzymes also differ
considerably from laccases sensu stricto.

Laccases sensu stricto are normally monomeric enzymes [13,14], whereas identified
NLACs form heterodimers with small proteins of unknown function. Interestingly, all
fungal genomes with a classified NLAC also had at least one gene encoding a small protein,
which could indicate the formation of a putative heterodimer [63].

The contribution of the small subunit to increase the stability of the enzyme in the
heterodimer has been suggested in POXA3 [75]. An equivalent heterodimeric complex of
another member from P. eryngii var. ferulae with a small protein showed the enhancement
of enzyme stability and a superior catalytic activity [76]. This has been recently confirmed
during the expression and characterization of the heterodimeric complex formed by the
NLAC of P. eryngii with a small protein identified in the genome of the fungus. In that
study, the stability to pH, temperature and presence of organic co-solvents and the catalytic
activity of the enzyme was remarkably increased by the presence of the small subunit [77].
Moreover, the crystal structure of a small subunit was solved for the first time. Finally, the
observed interactions between the catalytic and the small subunit indicated that the NLAC
holds structural features likely involved in substrate binding and/or the interaction with
the small subunit, which could explain the differences in activity and stability of monomeric
or complexed NLACs, as well as of NLACs compared to laccases sensu stricto [77].

New Multicopper Oxidases (NMCOs). In the 52-fungal-genome study, up to 29 atyp-
ical MCO sequences segregate from the rest of laccase-like enzymes in a separate cluster
named NMCO [63]. These enzymes were only found in a few Agaricales and Russulales
species. All were characterized by the absence of three of the ten conserved histidine
residues that coordinate the catalytic coppers of the TNC in all MCOs, which were replaced
by basic or acidic amino acids. In addition, and like NLACs, many NMCOs show an
arginine residue instead of the conserved aspartic acid in position 205 and exhibit a binding
pocket with more acidic amino acids exposed to the solvent than laccases sensu stricto [63].

New Laccase-Ferroxidases (NLAC-FOXs). In the 52-fungal-genome study, certain
species of Agaricales harbor some laccase-like sequences that are grouped separately in
the phylogenetic tree. This group was named NLAC-FOX due to the presence of one or
two of the acidic residues needed for Fe (II) binding and oxidation [63]. These sequences
have a conserved leucine in the position of the fourth axial ligand of T1 Cu, a tyrosine
replacing the conserved acidic residue at the 205th position of laccases sensu stricto, and a
sole disulphide bond. As for NMCOs, the relevance of these distinct features in the catalytic
activity and physiological role of NLAC-FOX awaits experimental validation.

3. Biotechnological Applications

Fungal laccases possess three main properties that make them versatile biocatalysts for
the industry: non-specific catalytic activity on a range of aromatic compounds and lignin
polymers (whether alone or in the presence of redox-mediators); they are eco-friendly
(they only require oxygen and produce water); and, in some cases, they possess high redox
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potential. Consequently, they stand out as oxidoreductases with the largest number of
reported applications to date in different sectors (Figure 6).
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Pulp and paper industry. Most of the lignin is removed during the cooking of wood
chips to obtain cellulosic pulp. The residual lignin remaining in the crude pulp is subse-
quently removed through bleaching sequences with chlorine-derived reagents to produce
bleached paper pulps. Today, the use of chlorine dioxide (ClO2) as a bleaching agent
in modern paper mills can be reduced by the application of enzymes such as laccases
and xylanases [78–81]. Laccases, in the presence of redox mediators, can be used in a
pre-bleaching step for removing the color caused by lignin, allowing us to reduce the use
of bleaching chemicals with the additional benefit that cellulose is not degraded during the
process [11,42,80]. In addition, laccases can be applied for deinking recycled paper, thus
reducing the environmental impact [82]. Laccase-mediator systems have been also used to
control pitch and lipidic deposits that reduce the quality of the pulps and cause problems
in the mill circuits [83]. In addition to this, laccases can be used for valorizing technical
lignins—the by-products from this industry—through the functionalization or grafting of
fibers with target compounds to make added-value materials [80,84], or through lignin
depolymerization to obtain lignin-derived compounds that can be used as components of
bio-based polymers or materials [85].

Textile. In a similar approach to the pulp and paper industry, laccases catalyze
the decolourization of textile organic dyes so that they can be used in finishing denim
fabric. Given their oxidative activity towards indigo dyes, fungal laccases can provide
the characteristic worn or stonewashed effect to denim fabrics by the partial removal of
the indigo dye, as demonstrated with a laccase from Trametes versicolor [86]. On the other
hand, fungal laccases provide an environmentally friendly synthesis of novel organic dyes
and fabric-dyeing technologies by catalyzing the oxidative coupling of aryl amines and
phenols, as demonstrated with a variant of PM1 laccase engineered by our group [10] or
with Pleurotus ostreatus laccase [87]. Furthermore, laccases can add novel characteristics
to the fabrics, like conductivity [88], or antimicrobial properties through the enzymatic
coating of fibers [89].

Bioremediation. Laccases can meet demanding environmental regulations for wastew-
ater treatment from different industries due to their ability to oxidize a wide range of
aromatic pollutants into less toxic derivatives. Chlorine-based compounds, phenols or
polycyclic aromatic hydrocarbons can be transformed by these enzymes into intermedi-
ates more amendable to secondary treatments [54,90,91]. In this context, laccases have
been successfully evaluated for the biodegradation of pesticides such as chlorophen and
dichlorophen from water [92–94]. Laccase-mediator systems can be a green alternative for
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the treatment of wastewaters polluted with azo dye-derived products from textile or paper
printing industries [53]. Moreover, due to their natural activity towards phenols, these
enzymes can contribute to reducing the pollution of high-phenolic-content wastewater
from olive-oil mills and distilleries [95]. As for pharmaceuticals and personal care products,
laccases have been studied for eliminating emerging antibiotic pollutants from wastewa-
ters [96] or other emerging contaminants like naproxene and carbamazepine [97], together
with endocrine-disrupting agents, steroid hormones, and microplastics [98].

Organic synthesis. Laccases have also drawn attention in organic synthesis due to
their ability to catalyze the oxidative coupling and dimerization of several compounds
with potential industrial applications, avoiding toxic reagents and chemical synthesis. As
aforementioned, several synthetic organic dyes used in paper printing and the textile indus-
try [10,99] can be obtained using laccase as a biocatalyst. Fungal laccases catalyze the syn-
thesis of organic dyes through the oxidative polymerization of phenolic compounds [100]
or aryl amines with phenols. The coupling of phenylenediamine and α-naphtol catalyzed
by P. ostreatus POXA1b laccase renders SIC-RED dye, while the coupling of resorcinol
and 2,5–diaminobenzenesulfonic acid renders other colored compounds [87,101]. Fungal
laccases also catalyze the synthesis of polymers such as polycatechol, a polymer used in
chromatographic resins and biosensors [102], or polyaniline [103], an electro-conductive
polymer with many applications [104,105]. Furthermore, laccases can be of interest to
the pharmaceutical sector as biocatalysts of the synthesis of relevant medical products,
such as antitumoral drugs like actinocin, which is obtained by the oxidation of 4-methyl-
3-hydroxyanthranilic acid [106,107] or vinblastine [108], or to conjugate catechins and
dextran to create anticancer drugs, as well as generate new derivatives from resveratrol and
β-estradiol [109–111]. Recently, these enzymes have been proposed to selectively couple
phenols as a tailoring step in polyketide synthesis—a rich source of pharmaceutical and
agrochemical lead compounds [112].

Food Industry. Laccases are used in beverage processing to remove phenolic com-
pounds and enhance or stabilize the organoleptic properties of the final products as an
alternative to chemical methods—for instance, to eliminate aromatic compounds, prevent
the loss of flavor and color quality in wine and prolong beer half-life [95,113]. Addition-
ally, in the bread-making process, laccases modify bread texture and dough consistency,
increasing the strength and stability of the final product [95,114].

4. Laccase Engineering and Heterologous Production

Fungal laccases are biocatalysts of interest for industrial purposes, as evidenced by
the applications mentioned in the previous section and patents filled [115]. However, the
harsh operational requirements of the industrial processes (e.g., high temperature, extreme
pH, ionic strength, etc.) often preclude the integration of wild-type enzymes. In silico
screening of genomes and databases allows for the discovery of wild-type enzymes from
extremophiles with potential properties of interest under harsh industrial conditions [116].
Alternatively, it is possible to endow native enzymes with new functionalities under non-
natural (extreme) conditions by using protein engineering to adapt the enzymes to the
target industrial process [11,117].

In this line of interest, the directed evolution of enzymes, pioneered by Frances Arnold
in the early 90s, arose as a powerful alternative to rational design in order to adapt enzymes
to industrial requirements [118].

4.1. Engineering of Fungal Laccases

Directed evolution reduces to practice the main processes of Darwinian evolution at
the molecular level and has a scale of weeks or months of work in the laboratory. Through
iterative rounds of genetic diversification and selection, the accumulation of beneficial mu-
tations in the protein sequence enables the in vitro evolution of the enzyme towards desired
traits, such as improved catalytic properties under non-natural conditions [119], or even
novel functionalities not found in nature [120]. Today, enzyme-directed evolution has be-
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come an essential part of biotechnological industries to design tailor-made biocatalysts, and
it is still under continuous development, with recent advances in library design [121,122],
methods of (ultra)high-throughput screening [123], or in vivo continuous evolution [124].
Furthermore, directed evolution constitutes an invaluable tool for elucidating evolutionary
principles [125].

A typical directed evolution cycle comprises three steps: (i) genetic diversification of
the DNA encoding the starting enzyme, (ii) expression of thousands of enzyme variants
in active form, and (iii) screening of the library in a high-throughput fashion to quickly
identify those mutants that exhibit improvements on the targeted property (Figure 7). The
fittest mutant(s) serve as a template for the next round of diversification and selection, and
the process is repeated as many times as required until the desired level of improvement is
achieved [126].
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Several studies in the literature illustrate the directed evolution (combined with ra-
tional approaches) of fungal laccases to facilitate their heterologous expression, extend or
improve their catalytic activities, and adapt their enzymatic properties to specific condi-
tions of application. The first directed evolution on a fungal laccase was carried out on a
M. thermophila laccase toward functional expression in Saccharomyces cerevisiae [127]. There-
after, the enzyme was evolved to enhance its catalytic activity in organic solvents [128].
Similarly, the functional expression in yeast of POXA1b laccase from P. ostreatus was ad-
dressed by combining error-prone PCR and DNA shuffling, whilst enzyme activity and
stability were also enhanced [129,130]. The expression levels and catalytic constants of a
laccase from Fomes lignosus (currently known as Rigidoporus microporus) were also enhanced
by random mutagenesis [131].

The high-redox-potential laccases from the white-rot basidiomycetes PM1 and
Pycnoporus cinnabarinus were subjected to directed evolution to improve their secretion by
the yeast S. cerevisiae while improving their catalytic activities [132,133]. The coding se-
quences of the final evolved laccase variants from the two parallel evolutionary trajectories
were thereafter randomly recombined by in vitro and in vivo DNA shuffling [134] to obtain
a collection of chimeric laccases with modified pH activity profiles and substrate affinities
and improved thermotolerances [135]. Next, the resulting random chimeric laccases were
later used by our group as departure points for designing enzymes a la carte for specific
applications. For instance, the re-design of the substrate-binding pocket of one of these
laccases by iterative saturation mutagenesis (targeting six amino acid residues delimiting
the pocket), allowed to improve the oxidation of natural phenolic compounds of biotechno-
logical interest [15]. Additionally, the structured guided DNA recombination of PM1 and
P. cinnabarinus evolved laccases [132,133] resulted in a domain-swap laccase with outstand-
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ing tolerance to high temperature and to the presence of organic co-solvents [136]. One
major objective in enzyme engineering is the development of robust biocatalysts with
improved activities towards specific substrates under the desired conditions of application.
Through laccase-directed evolution assisted by computational design, our group has de-
veloped a robust enzyme that efficiently catalyzes the synthesis of conductive polyaniline
structured in nanofibers and organic acid dyes for textile dyeing [10,137]. More recently, we
have developed alkaliphilic and thermophilic high-redox-potential laccases for wood con-
version processes. These evolved enzymes are able to boost kraft pulp bleaching, achieving
11% ClO2 savings; improve the de-fibering of wood chips in fiberboard production with
less energy required; and depolymerize kraft lignins at pH 10 [11,85].

Other research studies have also addressed the in vitro evolution of laccases for in-
dustrial purposes. Because of the dependence of fungal laccase activity on acidic pH,
the development of tailor-made laccases able to work at wider pH values is a recurrent
engineering goal, together with providing activity under other non-natural conditions. For
instance, the evolved PM1 laccase expressed in S. cerevisiae [132] was later subjected to
directed evolution to make it active in human physiological fluids, shifting its pH-activity
profile to more neutral values and improving its tolerance to halides [138]. In similar
approaches, laccases from T. versicolor, M. thermophila, Botrytis aclada or Cerrena unicolor
have been engineered to improve activity in ionic liquids [139], in broader pH ranges [140]
or in higher pH and temperature [141,142], respectively. In the case of laccase Lcc9 from
Coprinopsis cinerea, the optimal activity pH with phenol substrates was shifted to around
pH 8 [143]. Additionally, directed evolution, using a fluorescence-activated droplet sorting
system coupled with heat treatment, improved the resistance to organic solvents, ionic
liquids and temperature of another fungal laccase [144].

4.2. Heterologous Expression

Laccases are produced by basidiomycete and ascomycete fungi, either constitutively or
induced by the presence of lignin and aromatic compounds, copper, etc. [145,146]. Laccase
secretion by saprotrophic basidiomycete species during lignocellulose decomposition has been
reproduced in the laboratory by culturing the fungi under solid-state fermentation conditions
on agro-industrial waste or wood chips. This approach provides valuable information on the
potential use of these enzymes for the valorization of biomass waste [147,148].

In an attempt to boost the production of fungal laccases under controlled conditions,
their homologous expression has been assayed in different studies [149–151]. The pro-
duction yields offered by the homologous hosts are commonly insufficient for industrial
purposes, although there are some remarkable exceptions, such as the overexpression
of lac1 of P. cinnabarinus in a monokaryotic strain of this fungus under the regulation of
the glyceraldehyde-3-phosphate dehydrogenase promoter, yielding up to 1.2 g/L [152].
However, basidiomycete fungi are not easily genetically manipulated, and the presence of
multiple laccase gene isoforms may make the production and purification to homogeneity
of a single targeted protein. Furthermore, not all fungi have a status of GRAS (Generally
Recognized as Safe) organisms, making them incompatible with commercialization pur-
poses. Therefore, heterologous expression is the best production alternative to achieve the
efficient and simplified expression of these fungal enzymes.

The functional expression of fungal laccases in prokaryotic systems is notoriously
difficult to achieve, so there are only a few reports on this topic. The laccase from the
basidiomycete Cyathus bulleri became the first example of functional expression of a fungal
laccase in the prokaryotic host (E. coli) [153]. However, laccase expression was only detected
by zymogram, and no activity values were provided. Recently, the use of the Novel Signal
Peptide 4 has contributed to the functional expression of a laccase from T. versicolor in
E. coli, but the enzyme was secreted into the cell medium in much lesser amounts than
other non-fungal laccases [154]. A possible explanation for the poor expression levels of
fungal laccases in bacteria is related to differences between the host and the fungal post-
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translational modification machineries, which could lead to the formation of non-functional
aggregates of the recombinant protein [155].

In contrast, filamentous ascomycete fungi are excellent hosts for fungal enzyme pro-
duction. They often produce large quantities of proteins, far exceeding the capabilities
of yeasts [156] (Figure 8). In addition, sugar anchoring by these organisms is more con-
servative than in yeasts, which tend to hyperglycosylate proteins [157], so downstream
processing in filamentous fungi is easier. A first example of heterologous production of
a white-rot laccase in Aspergillus niger is the production of lac1 from P. cinnabarinus at
70 mg/L [158], compared to the 8 mg/L of the same enzyme obtained in Pichia pastoris
(current name, Komagataella pastoris) [159]. Subsequently, an evolved variant of the same
P. cinnabarinus laccase was also produced in Aspergillus niger, resulting in 23 mg/L of the
recombinant enzyme, a yield ten times higher than that obtained in S. cerevisiae [133]. The
levels of a laccase from Pycnoporus coccineus produced in Aspergillus niger also far exceeded
those obtained by natural expression [160], while the heterologous production of a Trametes
sp laccase in the same filamentous fungus rendered remarkable production yields (up to
850 mg/L) [161]. Aspergillus is also a preferred heterologous host from an industrial point of
view. For instance, M. thermophila laccase is produced at industrial scale in Aspergillus oryzae
and is commercialized by Novozymes in different preparations. The recombinant enzyme
was marketed under the trade names Flavourstar® for food applications and DeniLite® for
denim fabric finishing. Different basidiomycete laccase variants engineered in our labora-
tory have been also overexpressed in A. oryzae at industrial relevant scale for the synthesis
of conductive polyaniline [103] and of organic dyes whose textile dyeing properties were
verified in an industrial environment [10]. In addition to Aspergillus spp, other filamentous
fungi are also potential enzyme-producing hosts for the industry. For instance, the use of
Trichoderma reesei as an expression system for laccase production provided 920 mg/L of
Melanocarpus albomyces (ascomycete) laccase in fed-batch fermentation [162] and around
1000 mg/L of a T. versicolor laccase [163], whereas only 20 mg/L of Phlebia radiata laccase
was obtained [164].
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Despite the potential of filamentous fungi as enzyme-production systems, they are
not easy to manipulate genetically for their use as hosts in directed evolution [165]. By
contrast, yeast, and particularly S. cerevisiae, is considered a platform of choice for the
directed evolution of fungal laccases. In addition to its easy genetic manipulation, the
growth of S. cerevisiae is rapid and demands little, and it can perform the post-translational
modifications required to secrete active eukaryotic enzymes into the culture broth [165,166].
In addition, the high frequency of the homologous recombination of S. cerevisiae [167]
provides a crucial added value for the generation of mutant libraries of large sizes in
enzyme engineering [127,168,169]. Moreover, laccase expression in S. cerevisiae can be
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enhanced through directed evolution, obtaining in some cases quite significant production
levels (20–25 mg/L [10,127]), similar to those obtained in P. pastoris. The latter offers, in
general, higher production yields than S. cerevisiae due to its high-density growth and less-
glycosylated recombinant proteins [170]. Reported laccase production in this yeast yields
range from 8 to 136 mg/L for P. cinnabarinus [159], Trametes trogii [171], Trametes sp. [172]
and B. aclada [173] laccases, with the remarkable exception of 550 mg/L for T. versicolor
laccase, produced in a fed-batch bioreactor using the AOX1 promoter [174]. Therefore,
a recurrent strategy is to use a tandem-expression platform to engineer the enzymes in
S. cerevisiae and over-express the evolved laccases in P. pastoris [11,175]. Nevertheless, yeast
may show unpredictable behavior in expressing some coding sequences. For instance,
differing results were obtained when laccases from P. ostreatus were produced in S. cerevisiae
or Kluyveromyces lactis [156].

The native signal peptides of the wild-type enzymes are usually replaced by the sig-
nal peptides of most expressed proteins of the heterologous host due to their crucial role
in protein expression [176]. The leader sequence of the α-factor mating pheromone of
S. cerevisiae is among the most widely used leader sequences, known as α-factor prepro-leader.
In terms of laccase expression, the fusion of this signal peptide to the enzyme has mainly
contributed to the functional expression of these enzymes in both P. pastoris [172,177,178]
and S. cerevisiae [10,127,132,133]. In fact, the recurrent use of the α-factor preproleader
(fused to coding sequence of laccases) in the directed evolution campaigns has successfully
enhanced enzyme secretion yields due to the accumulation of beneficial mutations in the
evolved leader sequence. For example, the accumulation of five mutations in the α-factor
preproleader during the directed evolution of P. cinnabarinus laccase in S. cerevisiae raised
40-fold laccase production compared to the native α-factor preproleader [133]. Thereafter,
the highest laccase production levels ever reported for heterologous expression of basid-
iomycete laccases in S. cerevisiae (25 mg/L) was achieved with a further evolved α-factor
preproleader (known as α9H2) [10]. Recently, we have studied the epistatic effects of muta-
tions accumulated in this signal sequence through successive directed evolution campaigns
and have been able to develop an optimized leader (αOPT) that markedly enhances the
secretion of different fungal oxidoreductases and hydrolases [179].

5. Challenges and Opportunities

Actions to be carried out in the coming years within the European Bioeconomy Strat-
egy and the Green Deal aligned with the UN Sustainable Development Goals seek to
establish a bio-based economy in Europe, protect our natural habitats, and make Europe
climate-neutral by 2050. The use of sustainably sourced plant biomass as a renewable raw
material, and the development of environmentally friendly and circular industrial pro-
cesses with reused or recyclable products, will contribute to meeting these goals. Industrial
biotechnology is key to helping this transition to a green and circular economy.

Oxidoreductase enzymes involved in lignocellulose biodegradation have great poten-
tial to contribute to attaining the integral use of plant biomass and waste as an alternative
raw material to fossil feedstock to produce energy, chemicals and materials. However, the
chemical industry has not yet embraced enzymatic oxidation reactions to a large extent.
This is primarily due to the lack of biocatalysts, with the required activity and/or selectivity
under the rigorous process conditions, that are available at reasonable scale for medium-
and large-scale biotransformations.

Fungal laccases have been traditionally described as biocatalysts with high applica-
bility potential in different sectors. In recent years, the discovery and characterization of
novel enzymes, the description of new redox mediators, the advances in protein engineer-
ing to obtain enzymes adapted to the required conditions of application, and the steady
demonstration of their versatility to catalyze reactions of industrial and environmental
interest (from chemical synthesis to removal of emerging pollutants in wastewaters) have
demonstrated that laccases remain the subject of an active field of research. In recent years,
laccases have gained renewed attention for the valorization of technical lignins from the
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pulp and paper and bioethanol industries due their ability to oxidize and deconstruct the
lignin polymer. Due to their higher redox potential, laccases from ligninolytic fungi stand
out as the preferred enzymes to realize the enzymatic depolymerization of leftover lignins
into bio-based polymer building blocks (bioplastics included) and chemicals. However, the
large-scale production of basidiomycete laccases is a pending challenge for the industrial
implementation of these amazing enzymes.
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