Group Leader/s

 

intro

Our group aims to unveil the structure of cellular machines to gain mechanistic insight into macromolecular function and assist the development of biomedical applications. For this, we use electron cryomicroscopy (cryo-EM) and X-ray crystallography, both providing information to atomic resolution, combined with other biophysical and biochemical techniques. This integrative methodology is applied to study essential cell processes such as genome transcription and DNA repair.

web_portadas

Genome transcription

The transfer of genetic information encoded in DNA is the main determinant of gene expression. Alterations in this process have significant impact on cell homeostasis and are directly related to disease. RNA polymerases transcribe the genetic information from DNA to RNA, by catalyzing the addition of nucleotides that are complementary to the DNA template strand. Eukaryotes require three different RNA polymerases, each transcribing a specific set of genes. We focus on the study of RNA polymerase I and various transcription factors that regulate gene expression. Further details can be found [here].

webfig1

DNA damage detection and repair

DNA damage threatens cell life and must be repaired to maintain genome integrity. Transcription is particularly sensitive to DNA damage and, hence, it is linked to DNA repair. Different lesions induce RNA polymerase stalling, which activates the recruitment of DNA repair factors, including endonucleases XPF and XPG to eliminate the lesion. Alterations in these repair factors associate with genetic disorders such as xeroderma pigmentosum and Cockayne syndrome. We focus on the study of lesion detection by RNA polymerases and damaged DNA elimination by XPG. Further details can be found [here].

webfig2

 

Members

web_grupo
 

Moreno-Morcillo M, Taylor NM, Gruene T, Legrand P, Rashid UJ, Ruiz FM, Steuerwald U, Müller CW, Fernández-Tornero C  [2014]. Solving the RNA polymerase I structural puzzle. Acta Cryst. D70:2570-2582

Basu RS, Warner BA, Molodtsov V, Pupov D, Esyunina D, Fernández-Tornero C, Kulbachinskiy A, Murakami KS  [2014]. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme. J. Biol. Chem. 289:24549-24559

 

Funding

2018-2021. BFU2017-87397-P. Spanish Ministry of Science [PI]
2020-2021. RED2018-102467-T. Spanish Ministry of Science [Team leader]
2017-2022. Agence Nationale de la Recherche (France). [Team leader]

2015-2018. Ramón Areces Foundation [PI]
2014-2017. BFU2013-48374-P. Spanish Ministry of Science [PI]
2011-2013. BFU2010-16336. Spanish Ministry of Science [PI]
2010-2012. EIC-EMBL-2011-0076. Spanish Ministry of Science [PI]
2010-2011. 200920I077. Spanish National Research Council (CSIC) [PI]
2016-2017. BFU2015-71978-REDT. Spanish Ministry of Science [Team leader]
2014-2015. CSIC13-4E-1700. Spanish Ministry of Science [Team leader]

2011-2018. Industrial Collaboration with PharmaMar [PI]

 

 

More info

Outreach publications

Fernández-Tornero C. (2017) Dime con quién andan tus proteínas y te diré qué hacen tus células. Huffington Post – 21 March

Fernández-Tornero C. (2013) Viaje al centro de la célula. Huffington Post – 31 October (Front page)

Fernández-Tornero C. (2014) La síntesis del ARN: un proceso en el centro de la vida. Boletín de la Institución Libre de Enseñanza 95-96:77-87

Fernandez-Tornero C. (2010) Nobel Prize in Chemistry 2009: atomic structure of the cellular machinery for protein synthesis. Anales de la Real Academia Nacional de Farmacia 76:119-136

Selected highlights from the media

https://www.efe.com/efe/espana/efefuturo/identifican-mecanismo-que-repara-danos-en-el-adn-por-algunas-quimioterapias/50000905-4336597

https://www.lavanguardia.com/vida/20200904/483290964544/identifican-mecanismo-que-repara-danos-en-el-adn-por-algunas-quimioterapias.html

http://www.madrimasd.org/notiweb/noticias/descifrada-estructura-proteina-clave-que-repara-danos-adn-por-radiaciones-ultravioleta-o-quimioterapia

https://www.efe.com/efe/espana/efefuturo/-/50000905-3725429

https://www.lavanguardia.com/vida/20180821/451399577233/hallan-el-mecanismo-de-las-celulas-para-reparar-adn-afectado-por-radiacion-uv.html

http://www.madrimasd.org/notiweb/noticias/hallado-un-mecanismo-por-que-las-celulas-detectan-en-adn-lesiones-producidas-por-radiacion-ultravioleta

https://www.rtve.es/noticias/20180821/csic-halla-mecanismo-celulas-detectan-lesiones-adn-causadas-radiacion-ultravioleta/1782160.shtml

https://www.sciencedaily.com/releases/2018/08/180822164205.htm

Networks

RNA Life Network [Team leader]

SEBBM Protein Structure and Function Group [Coordinator]

Alumni

Srdja Drakulic, Postdoc (2017-2019)
Mercedes Spínola Amilibia, Postdoc (2017)
Rocío González Corrochano, Postdoc (2011-2016)
Eva Torreira Ontiveros, Postdoc (2011-2016)
Nicholas M. I. Taylor, Postdoc (2011-2012)

Marta Sanz Murillo, PhD Student (2014-2019)
Jaime Alegrio Louro, PhD Student (2011-2016)

Erica González Castro (2020)
Carla Gracia Paricio (2020)
Alicia Santos González de Aledo (2018-2019)
Álvaro Ras Carmona (2018)
Carolina Correa Maté (2017-2018)
Carlos Pardo Hernández (2017)
Álvaro de la Gándara (2017)
Paula García Trapote (2015-2016)
Nuria Castillo Tutor (2011-2015)
Pablo Saralegui (2011)
Marcel Rösinger (2010-2011)